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Abstract— This study is a primer for formulating, analysing and simulating mathe-
matical models for understanding the dynamics of COVID-19, the novel corona virus
that emerged from Wuhan city in December 2019. A basic modeling framework,
based on using a simple compartmental deterministic epidemic modeling a homoge-
neous population, is illustrated for gaining insight into the transmission dynamics
of COVID-19 which is also developed to stochastic case. This simple model can be
extended to include the population-level impact of a COVID-19 vaccine.
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I. Introduction

There exists a wide class of mathematical models that analyse the spread of epidemic diseases, either
deterministic or stochastic, and may involve many factors such as infectious agents, mode of transmission,
incubation periods, infectious periods, quarantine periods, etc. [4]. A basic model of infectious disease
population dynamics, consisting of susceptible (S), infective (I) and recovered (R) individuals were first
considered in a deterministic model by Kermack and McKendric (1927). Since then, various epidemic
deterministic models have been developed, with or without a time delay [5]. At the same time, many
stochastic models have been considered: discrete time models [6], continuous time Markov chain models
and diffusion models [7]. The models obtained in these three categories have increasing mathematical
complexity and allow us to study important aspects of the epidemics. A variety of mathematical model
types, including statistical, deterministic, stochastic, network and agent-based models, have been used to
study the transmission dynamics and control of COVID-19 [1].

The rest of paper is as follows. In first section some basic compartmental epidemic model have been
studied. Section 2 includes fundamental ideas of vaccination models. In section 3 the model is extended
to include vaccination.
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II. Basic compartmental epidemic model for COVID-19 dynamic

To design the basic epidemic model for COVID-19, let N(t) be the total human population size at
time t. This population is divided into the compartments of susceptible S(t) (i.e. people who are at risk of
acquiring infection, but have not yet contracted the disease), exposed E(t) (i.e. newly-infected individuals
who are incubating the disease), symptomatically-infectious Is(t)(i.e. infectious people showing clinical
symptoms of the disease), asymptomatically-infectious Ia(t) (i.e. infectious people showing no clinical
symptoms of the disease), hospitalized Ih(t), recovered R(t) individuals and D(t) stands for the deceased
individuals [1]. Thus,

N(t) = S(t) + E(t) + Is(t) + Ia(t) + Ih(t) +R(t) +D(t).

A major feature of COVID-19 is that a large fraction of infections is generated by infected individuals who
do not show clinical symptoms of the disease (i.e. individuals in the Ia compartment). This important
feature of asymptomatic transmission, makes the effort to control the disease more difficult and at the very
least, the model should incorporate this feature [1].

In order to formulate the basic epidemic model for COVID-19, it should be noted that infection
occurs when a susceptible individual (i.e. someone in the S compartment) has an effective contact with
an infectious individual in either the asymptomatic Ia, symptomatic Is, or hospitalized Ih class. Based on
this fact and noting the flow diagram in Fig. 1, the basic model for COVID-19 transmission dynamics in a
community is given by the following deterministic system of nonlinear differential equations (where a dot
represents differentiation with respect to time t)[1]:

Fig. 1. Flow diagram of the model.

where

λa = βaIa/N, λs = βsIS/N, and λh = βhIh/N.
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and

Ṡ = −
(
βaIa + βSIS + βhIh

N

)
S,

Ė =

(
βaIa + βSIS + βhIh

N

)
S − σE,

İa = rσE − γaIa,

İS = (1− r)σE − (ϕS + γS + δS) IS ,

İh = ϕSIS − (γh + δh) Ih,

Ṙ = γSIS + γaIa + γhIh,

Ḋ = δSIS + δhIh.

(1)

In (1), the parameters βa, βs and βh respectively represent, the rate at which asymptomatically-infectious,
symptomatically-infectious, and hospitalized individuals transmit COVID-19 to susceptible individuals.
Generally βa 6= βs 6= βh. Exposed individuals progress out of the E class at a rate σ (i.e., 1/σ is the
intrinsic incubation period of COVID-19). It is assumed that a proportion, 0 < r ≤ 1, of exposed
individuals show no clinical symptoms of COVID-19 (and move to the (Ia) compartment) at the end
of the incubation period. The remaining proportion, 1 − r, show clinical symptoms and move to the (Is)
compartment at the end of the incubation period. Individuals in the Is (Ia) (Ih) compartment recover from
COVID-19 infection at a rate (γs) (γa) and (γh). Infectious individuals are hospitalized (or isolated either
at home or in hospital) at a rate φs. Individuals in the symptomatically-infectious (Is) and hospitalized
(Ih) compartments die of COVID-19 at a rate δs and δh, respectively.

III. Mathematical Model of Vaccination

Mathematical models of the impact of vaccination is one of the important epidemiology concerns. In
1760, Swiss mathematician Daniel Bernoulli published a study of the predicted impact of immunization
with cowpox upon the expectation of life of the immunised population. Nearly 150 years later, around
the time of the First World War, Ronald Ross produced a series of mathematical models of the spread of
malaria that laid the foundations of the modern theory of the control of infectious disease. For vaccination
strategies, some of the simplest questions that arise are: (i) what fraction of the population must be
successfully vaccinated to eradicate the infectious agent; (ii) what happens if the target coverage for
eradication is not met; (iii) does it matter if vaccine induced immunity wanes with time; and (iv) what
happens if there are vaccine resistant sub-types? [3] In he following we review mathematical models to
address some of these questions.

Amplification Factors and Eradication Thresholds

All that is required for the incidence of an infectious disease to go into decline is that each case should
generate, on average, less than one other case. The number of secondary infections caused by one infectious
individual is often referred to as the effective reproductive number and denoted by R. Epidemics often
peak and go into decline as R falls below 1 because the pool of susceptible individuals has been temporarily
exhausted. For the trajectory of incidence to remain on a downward course until the agent is eradicated
requires that the effective reproductive rate should remain below 1, even when the number of susceptible
individuals is at its maximum. There are two further amplification factors that stated in Tab. (??). R0,
the basic reproductive number is the number of secondary cases caused by one primary case introduced



Last name of 1th author et al , Short title of the article (up to 10 words)

into a population that is wholly susceptible. R0p, the basic reproductive number under vaccination is the
number of secondary cases caused by one primary case introduced into a population in which a proportion
p have been vaccinated. For a perfect vaccine that confers life-long protection [3]

R0p = (1− p)R0

The critical vaccination proportion that will achieve eradication, pc, is that for which the basic reproductive
number under vaccination is just equal to 1. This yields:

pc = 1− 1

R0

Amplification factor Name Definition
R0 Basic reproductive number Number of secondary case caused by one

primary case introduced into a population
that is wholly susceptible

R0p Basic reproductive number un-
der vaccination

Number of secondary cases caused by one
primary case introduced into a population
in which a proportion p have been vacci-
nated

R Effective reproductive number The number of secondary cases caused by
one primary case in a population with the
extant susceptible population

Table I. Different amplification factors in mathematical models of vaccination

Post-vaccination Dynamics

To study the predicted dynamics of infection after the introduction of a vaccination program requires
the use of mathematical models of transmission dynamics. The simplest model that can be used to study
the impact of vaccination keeps track of three groups of individuals: susceptible, S; infected, I; and
recovered R. The model we study here includes a fourth group; those who have been vaccinated, V (Fig.
(2)). This refinement allows the investigation of the impact of waning immunity as well. If vaccine induced
immunity is life-long, then the equations of this SVIR model are [3]:

Ṡ = (1− ep)µN − βIS − µS,

V̇ = epµN − µV,

İ = βIS − γI − µI,

Ṙ = γI − µR.

Here, N is the total population size. The transitions described by each term of the equations of this
model are as labeled and the model’s parameters are described in Tab. (??)
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Fig. 2. Modeling childhood vaccination

Parameter Interpretation
N Population size
β Force of infection
µ Death rate
γ Rate of recovery
e Vaccine take, the fraction of

vaccinated population protected
by the vaccine

ρ Fraction of population vacci-
nated at birth

ω Rate of loss of vaccine induced
immunity

Table II. Parameters of the model

IV. Stochastic Model with Vaccination

Vaccination is universally considered to be the best hope to effectively curtail or eliminate COVID-19
globally. The vaccines are expected to offer some protective but not perfect efficacy against COVID-19
infection. Thus, a model like Eq. (1), which allows for human demography (births/deaths processes) is an
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appropriate tool for accounting for long-term outcomes. Consequently, to assess the impact of such a vaccine
on the dynamics of COVID-19, the model (1) will be extended to incorporate vital dynamics (births and
deaths). Further, the susceptible population (S(t)) will be split into two sub-populations, namely the sub-
population of unvaccinated susceptible (denoted by Su(t)) and vaccinated susceptible (Sv(t)) individuals.
It is assumed that the potential COVID-19 vaccine is imperfect, so that breakthrough infection (i.e. the
infection of vaccinated susceptible individuals) can occur but at a reduced rate, compared to the infection
of unvaccinated susceptible individuals. It is also assumed that the vaccine-induced immunity may not
last a lifetime. To incorporate a vaccine into the basic model (1), the first two equations are replaced by:

Ṡu = Λ + ωvSv −
(
βsIs + βaIa + βhIh

N

)
Su − (µ+ ξv)Su − σEISvIESvẆt,

Ṡv = ξvSu − (1− εv)

(
βsIs + βaIa + βhIh

N

)
Sv − (µ+ ωv)Sv + bσEISvIESvẆt,

Ė =

(
βsIs + βaIa + βhIh

N

)
Su + (1− εv)

(
βsIs + βaIa + βhIh

N

)
Sv − (µ+ σ)E + bσEISvIESvẆt,

İS = (1− r)σE − (µ+ ϕS + γS + δs) Is − σIRIsRẆt,

İa = rσE − (µ+ γa) Ia − σIRIaRẆt,

İh = ϕsIs − (µ+ γh + δh) Ih − σIRIhRẆt,

Ṙ = γsIs + γaIa + γhIh − µR+ +ρ1σIR(Is + Ia + Ih)RẆt,

Ḋ = δSIS + δhIh + ρ2σIR(Is + Ia + Ih)RẆt,

(2)

This model is stochastic. The fact behind the motivation for generating the stochastic dynamic model is
the stochastic nature of the COVID-19 dynamics, which differs everywhere and has unpredictable charac-
teristics. We start by adding white noise terms satisfying Wiener process (Wt) properties to the dynamic
model. The newly added diffusion terms are used to reach more probabilistic positions covering a wide
range of probable viral wave dynamics. Two positive diffusion coefficients are assumed to study how the
8 classes are stochastically affected by each other. The first diffusion coefficients the exposed-infected-
vaccinated coefficient (σEIV ) which measures the probabilistic effect of exposed, infected, vaccinated, and
susceptible individuals on each other. The σEIV is stochastically affecting vaccinated people through the
assumed constant weights b [2]. The second diffusion coefficient is the infected-recovered coefficient (σIR)
which measures the stochastic diffusion effect of the recovered, deaths, and infected individuals on each
other. ρ1 and ρ2 are constant weights that describe the partial effect of the σIR on the recovered and deaths
class respectively. Also, βh represents the rate at which hospitalized individuals transmit COVID-19 to
susceptible individuals, ξv is the vaccination rate, 0 < εv ≤ 1 is the vaccine efficacy to protect against
breakthrough infection (in vaccinated susceptible individuals), and ωv is rate of loss of vaccine-induced
immunity. All other parameters in Eq. (2) are as defined before. It is assumed, for simplicity, that the
imperfect vaccine does not wane during the chosen time duration for the model simulations. It is also
assumed that vaccine-induced protection can wane at a constant rate.
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