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Abstract— In this paper, determining equation for multipliers and the 2-dimensional
homotopy formula employed to construct higher order conservation laws for the
Hunter-Saxton equation(HSE). Furthermore,The invariance properties of the multi-
pliers with respect to the Lie point symmetry generators are investigated to construct
new conservation laws.
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I. Introduction

In the study of PDEs, conservation laws are important for investigating integrability and linearization
mappings and for establishing existence and uniqueness of solutions. They are also used in the analysis
of stability and global behavior of solutions[2, 3, 7, &]. conversation laws are essential in physics, which
state that specific quantities of an isolated system will remain constant over time.

Many methods for dealing with the conservation laws are derived, such as the method based on the
Noethers theorem, the multiplier method, the Herman-Poole method, etc.[2, 3, 6, 7]. There are several
limitations inherent in using Noethers theorem to find local conservation laws for a given PDE system. First
of all, it is restricted to variational systems. Consequently, the linearizing operator (Frechet derivative)
for PDE system, must be self-adjoint, which implies that the number of PDEs must be the same as the
number of dependent variables appearing in system. In addition, one must find an explicit Lagrangian L[U]
whose Euler-Lagrange equations yield PDE system. There is also the difficulty of finding the variational
symmetries of a given variational PDE system. The Herman-Poole method has some limitations such




as finding densities because densities are linear combinations of scaling symmetries with undetermined
coefficients. So with out scaling symmetries we can not find the conservation laws. In[5] we improved
multiplier method by using homotopy operator [8] as a powerful algorithmic tool, to calculate the conserved
quantities (fluxes). Our aim is to continue, by analyzing the symmetry action of the Lie point symmetry
generators on the multipliers of the Hunter- Saxton equation (HSE) to construct new conservation laws
from known conservation laws.
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The HSE is a well known nonlinear hyperbolic PDE in mathematical physics. This equation has been first
suggested by Hunter and Saxton[10] for the theoretical modeling of nematic liquid crystals. Liquid crystals
are intermediate states of matter observed between the liquid and solid states. They have a fundamental
role in indicating the characteristics of fluid flow. Usually, two linearly independent vector fields are needed
for the complete description of nematic liquid crystals; One for characterizing the fluid flow and one for
describing the orientation of the molecules, which is the so-called director field [9]. Also, the skeleton of
the present paper is as follows. In section 2,We have referred to some definitions and previous results that
are used in the later sections. Section 3 deals with the application of Lie symmetries to generate new
multipliers of the conversation laws. we obtain new conservation laws of this equation by using the Lie
symmetries in section 4.

II. Conservation Laws

Consider a nonlinear system A(zx, u(")) = 0 of partial differential equations of order n with p indepen-

dent variables x = (z!,...,2P) and ¢ dependent variables u = (u',...,u?). A Conservation law of a PDF
system is a divergence expression
(2) DivP =D{P; +---+ DpPp =0

holding for all solutions u = f(x,t)of the given system. In (2),P;(x,u(")),i =1,--- ,p, are called the fluxes
of the conservation law, and the highestorder derivative r present in the fluxes is called the order of the
conservation law. If one of the independent variables of PDE system is time t, the conservation law (2)
takes the from

(3) D;T + DivX =0,

where Div is the spatial divergence of X with respect to the spatial variables z = (z!,...,2?). Here T
referred to as a density, and X = (Xy,---,X,,) as spatial fluxes of the conservation law (2). The conserved
density, T, and the associated flux, X = (X, -+ ,X,) are functions of z,t,u and the derivatives of u with

respect to both z and ¢t. In particular, every admitted conservation law arises from multipliers £”(z, u(l))
such that

(4) ¢ (z,uD) - Az, u™) = D Py(x,u™)

holds identically, where the summation convention is used whenever appropriate. Through this approach,
the determining of conservation laws for a given PDE system reduces to finding sets of multipliers. The
Euler operator with respect to u® is the operator defined by
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where M{"* is the order of f in u® with respect to x. It is well known that, the Euler operators (5) annihilate
any divergence expression D;P;(x, u(’")). Thus, the following identities hold for arbitrary function u:

Eua(li) (D'L-Pl(xyu(r))) = O, o = 1,. -, q

The converse also holds. Specifically, the only scalar expressions annihilated by Euler operators are di-
vergence expressions. In continuation, the following theorem is applied which connecting multipliers and
conservation laws. A set of multipliers {&”(z,uY)}_, yields a conservation law for the PDE system if
and only if the set of identities

(6) Euo‘(x) (é-l/(x,u(l)) : A(xau(n))) =0, a=1,---,q

holds identically. The set of equations (6) yields the set of linear determining equations to find all sets
of conservation law multipliers of the PDE system by considering multipliers of all orders. To calculate
the conserved quantities T and X, we need to invert the total divergence operator. This requires the
integration (by parts) of an expression in multidimensions involving arbitrary functions and its derivatives,
which is a difficult and cumbersome task. The homotopy operator is a powerful algorithmic tool (explicit
formula) that originates from homological algebra and variational bicomplexes. ( u(x t 7 Hg()x 9 f) that
are defined as below, are the components of a 2- dimensional homotopy operator

! dA
(7) Hoy )f / Z [)\u , where m = z,t,.

The z-integrand Iii)(x " f and t- integrand, Z(o? (@) f are defined as
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where M7, M3' are the order of f in u® with respect to x and ¢ respectively, and combinatorial coefficient
B@®@ = B(iy,i2, k1, ko) defined as

(e (e
)
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9) BY) = Bliy, i, ky, k2) =

In a similar way,B®) = B (42,11, k2, k1)is based on cyclic permutations. Suppose that an exact differential
function f = f(x,u™)(z)) is given. That is, there exists a function J = J(z,u™~1(z)) such that
f = DivJ. Then,

J:Div_lf:( u(mt)f’ u(mt f)



II1. Application of Lie symmetries to generate new multiplier

If a given PDE system is mapped into another PDE system by an invertible transformation (point
or contact transformation) then each conservation law of first system, is transformed to a corresponding
conservation law of second syatem. When the invertible transformation is a symmetry (discrete or contin-
uous) of PDE system, then the corresponding conservation law is a conservation law of itself. Related to
this, two formulas are presented by Bluman, Temuerchaolu and Anco in [2]. In this section, we use same
idea for multipliers instead of conservation laws. By calculating the Lie point symmetry generators, we
observed that in some cases the symmetry properties of the multipliers gave rise to alternative multipliers.
This implies that alternative conservation laws can be calculated. Suppose D;P;[U] = 0 is a coservation
law of PDE system. Under point transformation there exist functions {W;[W]}" ; such that formula

(10) J[W]|D;P;[U] = D;V;[W]

holds, where W;[W] is given explicitly in terms of the determinant obtained by replacing the ith column of
the Jacobian determinant

(11) JW] =

by column[P;[U],--- , P,[U]].[3]

We now restrict our attention to the most important situation when the invertible point transformation
is a symmetry of PDE system.  If the invertible point transformation (x;u) — (Z(z;u); a(z;u)) is a
symmetry of the PDE system, then a conservation law D;Pi[U] = 0 of (1) yields the conservation law
D;¥;[U] = 0 of PDE system. A set of multipliers {\(x,U,dy,--,dyr)}?_, yields a new conservation
law of PDE system A, (z;u®)),if and only if this set is independent of {\,(z,U,dy,--- ,dy~)}"_, on all
solutions U(x) = u(z) of PDE system A, (z;u(®).

PROOF. Two conservation laws of a PDE system A, (z;u®) are equivalent if and only if their cor-
responding fluxes differ by a curl term on all solutions U(z) = u(z) of PDE system A, (z;u®). For a
PDE system A, (x; u(k)) in Cauchy-Kovalevskaya form, all equivalent conservation laws have the same set
of multipliers when the multipliers are restricted to solutions U(z) = u(z)of A, (z;u®) [1]. Hence two
sets of multipliers are equivalent when they agree on all solutions U(z) = u(z)of A, (z;u®). In particular,
there is a one-to-one correspondence between nontrivial conservation laws (up to equivalence) and sets of
nontrivial multipliers.

IV. New Conservation Laws for the HSE

In this section, we construct higher order conservation laws for the HSE. Consider the multipliers of
the form &(x, t, u, uy, U, Uzy, uy) for the (1). The determining equation for multipliers is

1
(12) Epo[&(x, b, uy Ugy Upy Ugs, Ugt) - (Ugt + §u926 + g, ) |= 0
Therefore, after straightforward but tedious calculation, we conclude that
1 1
(13) €= s (20506(—01 + ug)e M 4 2z (et + e)ug + (c1t? + 2(ca + 2¢3)t
(e u)?
C1

+2¢4)up + 2c3u — 2xcl)(6_ Ug ) + 2e“eser (e + uz))
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where ¢y, -, c7 are constants. Conservation laws of the HSE obtained as follows

casel: & = —t2up + xtugy — x
Therefore, we obtain the following conserved vector

1 1 1 1 1 1 1
T = thuuxt + Eﬂuiu + 6t2u2u2x + §t2utux + Z—thui — §:vux — §t2uum

1 1
— Ztuux — Z—lwtuuzx + §u,
Ty = —t?uugus + 1ﬂvtuu + 1xtuu2 — §al:uu + ltqu + la:tu U — 1:cu — —tuu
2 — 3 x Ut 2 xt 2 T 4 x ] t 4 x Ut 2 t 4 t
— —t2uth — ltuzugc — ltzuutugc + 1xuum + 1uz.
8 3 6 2 2
case2: & = tu; + xuy
Therefore, the corresponding conserved vector is:
T = —tuug + liEuu2 + ltu2u2w + ltutum + lacu2 — —tulUpy — luum — —ZUU,
2 6 * 3 4 4" 4 4 4
1 9 1 1 ., 1 5 1 1 1 1 5 15
Ty = éxuum + §xuu¢ct + gwu Uz + Ztut + qutuw — Zuut — Ztuu2t — gtu Uty — gu Uy

case3: &3 =tus +u

1 1, 5 1 5 1 1 1
T = —tuug + —tuuy, + -tuuzg + —tuuy + —uuy — —Uly,

4 6 3 4 4 4
Ty = 2 422 gy + ~tud + - L 2.2
= —tulguy + —u Uy — —uly — —tuu —tuy + —uup — —tu U, — —uu
2 3 x Wt 3 x 2 t 4 2t 4 t 4 t 3 tx 3 x
cased: £, = uy
T, = ~uu +1uu2+1u2u L +1u u
1= 9 xt 6 T 3 2x 4 tx 4 x Wt
1 1 1 1
Ty = — + Zu? — §u2utw + guuxut
The Lie point symmetry generators of equation (1) are given by
(14) X = 3w, Xy = 8,5, X3 = 0y, + uau,
1

Xy = t0; — uby, X5 = txdy + §t28t + x0,

We now observe a symmetry analysis of the multipliers under the generators X1, --- , X5 as follows in table

1. So by proposition(III) the action of the generator X;, X3, X4, and X5 results in new multipliers
Q1 =1t —1, Q2 = ug, Q3= xtuy, Q4 = zU,
Qs =u, Q¢ =t*&, Q7 =1t&y, Qs =t&4 —u,

1 1
Qo = 575354 + t*zu, — tz, Qio = twu, + §t2€4

1
Qu = §t2§4 + .

and thus would result in new conservation laws for equation (1).



Table I. algebra Lie of table Commutation

Xi, & &1 &2 &3 &4
X, & &4 &4 0
X3 Tty LUy U 0
X4 24 t&4 t&a—u 0

1 1 1
X5 515354 + t2ru, —tr tau, + §t2§4 5zt2§4 +z 0

Conclusions

We utilized Euler operator to construct determining equation for multipliers. Then, higher order con-
servation laws of the HSE constructed by applying the 2-dimensional Homotopy formula. Furthermore, by
analyzing the symmetry action of the Lie point symmetry generators on the multipliers for HSE Obtained
new conservation laws from known conservation laws.
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