
Multi-Feasibility Variable Selection

Ali Fathi1, Mohammad Rashid1, Shayan Ranjbarzadeh1, ∗Mojtaba Tefagh1

1 Sharif Optimization and Applications Laboratory, Department of Mathematical Sciences, Sharif University of Technology,
Tehran, Iran

∗Correspondence: mtefagh@sharif.edu

Abstract— Background: In a large number of application areas, it is desirable to
obtain sparse solutions. In the case of nonconvex problems, which appear in vari-
ous circumstances, there is no certain tractable method to find an answer with the
minimum number of nonzero elements, where it is usually approximated by a con-
vex problem. In computational biology, one of the well-known problems is the flux
variability analysis, FBA, in which we find a set of reaction fluxes in a cell consistent
with constraint vectors with maximum cell growth.
Aim of the study: In this paper, first, we address five variations of the FBA prob-
lem designed in the !Optimizer 2021 competition to solve a more general nonconvex
variation of the FBA by having many constraints and using sparse methods. In the
first two problems, we seek to find the sparsest vectors, and in the next three prob-
lems, our goal is to find the matrix V satisfying some constraints with jointly sparse
columns. Then, we provide methods and algorithms to overcome these problems,
released by the Panda team as the winner solution in this competition.
Materials and Methods: The main algorithm is weighted l1-norm minimization, in
which we solve a weighted l1-norm problem in each iteration, but our weight up-
dating method is different from conventional methods. Using randomness is a new
technique in the process of updating weights. We also extend this idea to find jointly
sparse matrices. All materials can be found in the Codes and data availability sec-
tion.
Results: Although the data size for this competition is significantly huge, our linear
algorithm spends only a short time finding the near-optimal solution. A benchmark
of our main algorithms, which outperforms other methods in speed and accuracy, is
provided in the Results section of this paper.
Conclusions: By providing this fast algorithm for the multi-column variations of the
FBA, it is now possible to include many different constraint data to solve an FBA
problem simultaneously, which helps researchers accurately reconstruct new organ-
isms’ metabolic networks in a polynomial time.

mailto:mtefagh@sharif.edu

Fathi et al , Multi-Feasibility Variable Selection

Keywords—Metabolic Networks Optimization, Flux Balance Analysis, Sparse Optimization,
Linear Optimization, Separation Method.

I. Competition Motivations and Background
In inverse optimization models, one wants to learn the parameters of a family of optimization problems

in a way that some desirable points would become optimal for their associated instances [14]. In this
contest, we consider the following class of parameterized feasibility linear programs (LP) extensively studied
in the field of constraint-based reconstruction and analysis (COBRA)

(1)

find v
subject to SIv = 0,

lI ⪯ v ⪯ uI ,
I = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}.

where S = [S1, S2, . . . , Sn] is an m×n stoichiometric matrix whose columns Si characterize the stoichiom-
etry of the biochemical reactions happening inside a cell,

l =


l1
l2
...
ln

 and u =


u1
u2
...
un


are lower and upper bound vectors of dimension n as determined by the growth media capacity and
thermodynamic constraints, while the subvectors

lI =


li1
li2
...
lik

 and uI =


ui1
ui2
...

uik


as well as the submatrix SI = [Si1 , Si2 , . . . , Sik] contain the corresponding entries and columns, respectively.

A metabolic network comprises the collection of all chemical pathways of the metabolism of an organ-
ism, e.g., a bacterium. In systems biology, it is observed that if we reconstruct a metabolic network by
determining the set of indices I representing its reactions, whether the associated organism is viable or not
under circumstances specified by l and u can, to some extent, be predicted by whether LP (1) is feasible or
not [10]. Moreover, numerous experiments have demonstrated the consistency of cell viability predictions
derived by the feasibility of LP (1) with wet lab measurements [8].

Turning this argument around, one may try to reconstruct a genome-scale metabolic network, given
a list of viable and nonviable scenarios, by exploiting the fact that all the solutions to different instances
of LP (1) have the same sparsity pattern because they belong to different strains of the same species
[5, 6]. Therefore, one may select the candidate I by utilizing methods based on joint group sparsity. Other
possible applications of this developed framework include, but are not limited to, signal processing [4],
astrophysics [13], photoplethysmography [2, 3], and inverse scattering problem [12, 11].

Fathi et al , Multi-Feasibility Variable Selection

II. Problem Formulation and Methods
The competition task was broken into five gradually complicating rounds, with the main sparse recon-

struction problem at the last round. In this section, we present the problem formulations of each round
and provide our methods and algorithms for them, from the first round to the fifth.

Round 1: Steady-state flux distributions
The sij entry of S represents the molar rate of either consumption (if sij ≤ 0) or production (if sij ≥ 0)

of the metabolite i in the reaction j per unit of dry cell weight. If all the metabolites are in mass balance
at specific concentrations, i.e., Sv = 0, we say that the metabolic network is in the steady-state condition.

In this round, we were supposed to find the vector v of the rates of reactions subject to the constraints
(2) Sv = 0, l1 ⪯ v ⪯ u1,

as predicted by flux balance analysis (FBA) [7], i.e.,

(3)
find v
subject to Sv = 0,

l1 ⪯ v ⪯ u1.

To fulfill this task, we simply used a usual LP optimization code with objective function set to 0, i.e.,
maximize 0T v. Also, the code and the answer produced by the next round could be used here as a feasible
vector. Our Julia code for this round, placed in a jupyter notebook file, could be found here.

Round 2: Convex relaxation of cardinality optimization problems
In this round, we were required to find the most sparse flux vector satisfying the constraints

(4) Sv = 0, l1 ⪯ v ⪯ u1,

by minimizing ∥v∥0, i.e.,

(5)
minimize ∥v∥0
subject to Sv = 0,

l1 ⪯ v ⪯ u1,

and the biological intuition behind the theory is to minimize the total enzyme load imposed on the organism
[9].

To do so, some different algorithms were tested in this round (such as the dual-density method [?] and
five other algorithms), but the most successful one was a method called weighted l1-norm minimization
[15], which we explain here in detail. The weighted algorithm optimizes the following problem:

(6)
minimize

∑n
i=1wi|vi|

subject to Sv = 0,
l1 ⪯ v ⪯ u1.

This objective function, the weighted sum of the absolute values of the elements of v, is a generalization
of approximating l0-norm by l1-norm. Substituting w with 1⃗n, the weighted problem would be simply the
l1-norm minimization. Also, defining a set of zero indices Iz and putting wi ≈ ∞ for each i ∈ Iz, and
wi = 0 otherwise, makes this problem to find some sparse solution in which vIz = 0, which implies that
this formulation includes all sparse optimization problems of interest by having the appropriate weights.
To find the most proper weights, we use an iterative algorithm. The weights are iteratively updated
according to the optimal solution v of the previous step, and the current problem with these weights would

https://github.com/Optimizer-Competition-Pandas/Round_1/blob/main/Optimizer_R1.ipynb

Fathi et al , Multi-Feasibility Variable Selection

be solved to get a new optimal vector v and so it continues. There are many possible update rules for w;
for instance, a choice for converging to a sparse result could be like the following rule:

w(0) = 1⃗n

w
(t+1)
i =

1

|v(t)i |+ ϵ
(7)

By this rule, after solving the problem on step t to get v(t), weights for the next iteration are defined
inversely related to the magnitude of elements of v(t). If v(t)i is small for some index i, its corresponding
weight in the next iteration, w(t+1)

i , is set to a large amount, to try to force it to zero (if possible). The
intuition behind it is that if some elements of v are near to 0, reducing them by some ϵ and compensating
this reduction by the elements of v with large magnitudes, has probably an insignificant effect on l1-norm
(and the approximate objective function) but a significant effect on l0-norm, which is increased only when
some elements of v are set to absolute zero. Note that ϵ prevents numerical issues (such as division by
zero) and was set to 10−5 in our best practice result (we will discuss later that ϵ plays some other roles in
the theoretical analysis).

A variation of rule (7) was used in our final solution, named NW4 [16], which is as follows

w(0) = 1⃗n,

w
(t+1)
i =

1 + (|v(t)i |+ ϵ)p

(|v(t)i |+ ϵ)p+1
,(8)

in which p is some modifiable parameter and was epmirically set to 0.8 to get the best result on the
competition’s data. By setting p to 0, this rule would be the same with rule (7) (up to a constant 2 which
makes no change in the objective function).
However, NW4 was not the final update rule we used. As mentioned earlier, this converging-to-sparse rule
is just a heuristic and could fall into some local optima. To prevent this issue, we added some randomness
to the algorithm in the following way:

w(0) = 1⃗n

w
(t+1)
i =

1 + (|v(t)i |+ ϵ)p

(|v(t)i |+ ϵ)p+1
× r3i(9)

ri ∼ Unif [0, 1]

The distribution of randomness and the way it has appeared in w are set empirically to make the best
results.

The mentioned updating rules (7) and (8) are not merely heuristics. The theory behind the weighted
algorithm is using some convex (or concave) function to approximate l0-norm, called merit function, Φϵ(v)
such that:
(10) lim

ϵ→0
Φϵ(v) = ∥v∥0

In general, Φϵ is a convex function to make the final problem a convex one. However, Φϵ is sometimes chosen
to be a non-convex function, but is then approximated by a linear function afterward (which transforms

Fathi et al , Multi-Feasibility Variable Selection

the original problem to LP):

(11) Φϵ(v) ≈ Φϵ(v
(t)) +∇Φϵ(v

(t))
T
.(v − v(t))

For instance, one famous choice for approximating l0-norm is by the logarithmic function

(12) Φϵ(v) =

n∑
i=1

log (|vi|+ ϵ),

which satisfies property (10). Approximating this Φϵ with a linear function results in the following weights

(13) w(t+1) = ∇Φϵ(v
(t)) =

(
1

|v(t)1 |+ ϵ
, · · · ,

1

|v(t)n |+ ϵ

)T

,

which is exactly rule (7). The merit function Φϵ for NW4 rule has a few variations which could be found
at [16], and we don’t include the details here.

Round 3: Exact multi-feasibility variable selection
The goal of this round, is to find the unknown matrix V with jointly sparse columns which satisfies

the following constraints
(14) SV = 0, L ⪯ V ⪯ U.

Joint sparsity for an arbitrary set of sparse vectors means that all members of the set share a common
sparse support set, i.e.,

(15)
minimize ∥V ∥2,0
subject to SV = 0,

L ⪯ V ⪯ U,

where the mixed norm is defined as follows
(16) ∥X∥p,q = ∥(∥x′1∥p, ∥x′2∥p, . . . , ∥x′m∥p)∥q.

To the end of this paper, we assume that x′T1 , x′T2 , . . . , x′Tm are the rows of X in this definition, but some
authors use another convention of considering the columns instead of rows. Apart from the difference in
notation, the two definitions become clearly equivalent to one another if applied to the transpose matrix.

To solve this problem, we approximated l2,0-norm with l1,1-norm

(17)
minimize ∥V ∥1,1 =

∑c
j=1 ∥vj∥1

subject to Svj = 0 ∀j,
lj ⪯ vj ⪯ uj ∀j,

in which c is the number of columns in V and vj denotes the j-th column of V .
To justify this approximation, first, we see that in ∥V ∥p,0, the p-norm of rows together with the l0-norm,
determines whether a row is all-zero or not. Both p = 1 and p = 2 (and other values for p) fulfill this
job. In fact, we have exact equality, i.e., ∥V ∥1,0 = ∥V ∥2,0. Afterward, l0-norm in ∥V ∥1,0 is replaced with
l1-norm to get ∥V ∥1,1. To emphasize, it could be mentioned that the structure of rows and columns in
l2,0-norm is not maintained well, but as discussed, this approximation could be better understood when
viewed as the combination of two steps, i.e., relaxing l2-norm by l1-norm and then l0-norm by l1-norm.
Besides, we will replace l1-norm approximation by a similar weighted sum as in (6) to maintain the l0-norm
structure more precisely. Also, the successes of these approximations are demonstrated in practice.

Fathi et al , Multi-Feasibility Variable Selection

Problem (17) is LP and can be consequently solved efficiently. However, there are some other advantages
to this form. Namely, this problem could be separated into c independent problems

(18)
minimize ∥vj∥1
subject to Svj = 0,

lj ⪯ vj ⪯ uj ,

for 1 ≤ j ≤ c. Separation helps in the case that if the solver is super-linear (e.g., O(n1+δ) for an arbitrary
δ), having c distinct problems of size n would be solved faster than a problem of size c× n.

As mentioned before, we need to make some changes to (17) to keep the l0-norm structure in the
l2,0-norm. It could be done by applying the weighted algorithm, exactly like (6). The modified problem
would be as the following

(19)

minimize
∑n

i=1wi ∥v′i∥1
=
∑c

j=1(Σ
n
i=1wi|(vj)i|)

subject to Svj = 0 ∀j,
lj ⪯ vj ⪯ uj ∀j,

in which v′i denotes the i-th row of V . As the problem has remained linear, it could be separated again as
in the following:

(20)
minimize

∑n
i=1wi|(vj)i|

subject to Svj = 0,
lj ⪯ vj ⪯ uj ,

The weights are updated just the same as in the algorithm for round 2, but by substituting
∥∥∥v′(t)i

∥∥∥
2

or∥∥∥v′(t)i

∥∥∥
1

instead of |v(t)i |. For example, for rule (7):

w⃗(0) = 1⃗n

w
(t+1)
i =

1∥∥∥v′(t)i

∥∥∥
2
+ ϵ

(21)

The code for this round is available here.

Round 4: Multi-feasibility variable selection in the presence of error
In this round, it is requested to find the unknown matrix V with jointly sparse columns when the

matrix SV is constrained to have jointly sparse rows and L ⪯ V ⪯ U , i.e.,

(22) minimize
(
∥V ∥2,0, ∥(SV)T ∥2,0

)
subject to L ⪯ V ⪯ U.

Here in fact, this multi-criterion objective is meant to be interpreted as follows [1]:

(23) minimize ∥V ∥2,1 + λ∥(SV)T ∥2,1
subject to L ⪯ V ⪯ U.

In other words, it indicates that freeing every Svj = 0 equation would make a λ penalty. Similar to
the previous round, weighted algorithm and separation are utilized to solve this multi-columns problem,

https://github.com/Optimizer-Competition-Pandas/Round_3/blob/main/Optimizer_R3.ipynb

Fathi et al , Multi-Feasibility Variable Selection

but this time some Svj = 0 equations are freed:

(24)
minimize

∑n
i=1wi ∥v′i∥1

subject to Svj = 0 ∀j ∈ J,
L ⪯ V ⪯ U,

First, we calculate c variables d1, . . . , dc to determine a proper set J , which is meant to represent the
constraints to be satisfied:

dj =(min ∥vj∥1 s.t. Svj = 0 and lj ⪯ vj ⪯ uj)

− (min ∥vj∥1 s.t. lj ⪯ vj ⪯ uj)(25)
Here dj is a heuristic of the advantage gained by freeing column j, measured by the fall in l1-norm. Then,
if this proxy of benefit suggests an improvement more than λ, we would free its corresponding constraint,
i.e.,
(26) J = {j | dj < λ}.
Every other detail is exactly similar to the previous round. The code for this round is available here.

Round 5: Multi-feasibility/infeasibility variable selection
Making some small changes in the previous task, in this round we are going to solve (15) with the

additional constraint that at most K columns of SV may have nonzero entries, i.e.,

(27)
minimize ∥V ∥2,0
subject to ∥(SV)T ∥2,0 ≤ K,

L ⪯ V ⪯ U.

To address the importance and the biological intuition of this formulation, suppose that L̃ and Ũ have t
columns denoted by l̃1, l̃2, . . . , l̃t and ũ1, ũ2, . . . , ũt, respectively. Consider the following feasibility problems
for 1 ≤ k ≤ t

(28)
find v
subject to SIv = 0,

l̃Ik ⪯ v ⪯ ũIk,

where I is defined as follows
(29) I = {i | max

j
|Vij |> 0}.

According to the biological model, we know that these feasibility problems should be infeasible for the
ground truth I, which represents the underlying metabolic network, and the lower and upper bounds L̃
and Ũ , which represent the different growth environments or other conditions.

Therefore, we will validate each solution V by the percentage of the infeasible instances of (28) for the
corresponding I. Note that, solving (27) helps to get a better score since we know a priori that the smaller
the set of indices I, the higher the probability of infeasibility for each LP of the form (28).

Our proposed method to solve (27) is similar to the one in round 4. The problem that we solve is as
follows:

(30)
minimize

∑n
i=1wi ∥v′i∥1

subject to Svj = 0 ∀j ∈ J,
L ⪯ V ⪯ U.

https://github.com/Optimizer-Competition-Pandas/Round_4/blob/main/Optimizer_R4.ipynb

Fathi et al , Multi-Feasibility Variable Selection

Again, the heuristic coefficients are defined similarly:

dj =(min ∥vj∥1 s.t. Svj = 0 and lj ⪯ vj ⪯ uj)

− (min ∥vj∥1 s.t. lj ⪯ vj ⪯ uj)(31)

This time, we free the K most advantageous columns, i.e.,

(32) J = {j | dj < K-th maximum coefficient in d1, . . . , dc}

The code for this round is available here.

III. Preprocessing and Data manipulations
To make our codes more efficient and faster, some data modifications have been used. We review the

most important ones of them:
Ignoring non-zero elements:: In round 2, if for some elements of v like vi we have 0 < li (≤ vi)

or 0 > ui (≥ vi), then it is intrinsically impossible to have vi = 0. Therefore, it is mishandling
to try to make it zero (as the effort of increasing sparsity). Thus, vi could be taken out from the
sparsity objective function to give the model more freedom over these elements. The same matter
exists in rounds 3, 4, and 5, where we have L ⪯ V ⪯ U and if there is any element Li,j > 0 or
Ui,j < 0, as it forces Vi.j ̸= 0, it would be impossible for that row i to play a role in joint-sparsity
and therefore, this row could be taken out from the joint-sparsity objective function. In a more
formal way:

(33) ∀i[∃j [(Li,j > 0) ∨ (Ui,j < 0)] ⇒ wi = 0]

Setting definite elements:: If for some elements we have li = ui (Li,j = Ui,j in the last rounds),
vi (Vi,j) would be set to that definite value too, and there is no need to contain that variable in
our optimization problem. In the case of the data for this competition, this equaled value has
always been 0 (i.e., li = 0 = ui or Li,j = 0 = Ui,j), and setting vi (Vi,j) to zero, is like deleting
those variables from the problem without any further effort. These deletions have made the size
of the problems in this competition significantly smaller and have caused the running time to drop
considerably.

Sparsity lower-bound analysis:: As mentioned, those rows in which Li,j > 0 or Ui,j < 0 induce
Vi,j ̸= 0 and therefore define a lower bound for ∥V ∥2,0. This lower bound could be modified. Let
the algorithm result be v̄, and Inz be the set of indices of all non-zero elements of v̄. Roughly
speaking, it is expected that for most of those i ∈ Inz, forcing vi to zero would cause the problem
to get infeasible. As |Inz| is comparatively small, we can test it by checking |Inz| feasibility
problems. If knocking-out i ∈ Inz maked the problem infeasible, we can take wi = 0 and increase
our lower bound. Doing so in the competition has ensured us that our final results are adequately
close to optimal, as the distance between our ∥V ∥2,0’s and the calculated lower bounds have been
satisfactorily small.

IV. Results
In this link created by the organizer committee, you can find 7 datasets for each round of the com-

petition. These datasets consist of the metabolic models of the organisms Escherichia Coli, Salmonella,
Cricetulus Griseus, Phaeodactylum Tricornutum, Mus Musculus, Homo Sapiens, and the BiGG Univer-
sal Model, increasing by size respectively. In the actual competition, 3 of these datasets for each round

https://github.com/Optimizer-Competition-Pandas/Round_5/blob/main/Optimizer_R5.ipynb
https://github.com/mtefagh/Optimizer

Fathi et al , Multi-Feasibility Variable Selection

were requested to be worked on. The performance of our codes on this comprehensive 7 × 5 datasets are
summarized in the table (I).

Table I. The data and the benchmarks for our algorithms

Round Dataset m n c s.c. Running Time

1

E. Coli 72 95 1 - 0.119± 0.270 ms
Salmonella 2436 3357 1 - 7.563± 3.607 ms

P. Tricornutum 2172 4456 1 - 10.16± 3.57 ms
C. Griseus 4456 6663 1 - 25.44± 9.85 ms

Mus Musculus 8404 13094 1 - 72.02± 33.97 ms
Homo Sapiens 8399 13543 1 - 71.92± 32.04 ms

Universal Model 15638 28301 1 - 0.161± 0.003 s

2

E. Coli 72 95 1 8 3.221± 0.505 ms
Salmonella 2436 3357 1 5 47.15± 4.25 ms

P. Tricornutum 2172 4456 1 93 0.125± 0.007 s
C. Griseus 4456 6663 1 95 0.193± 0.012 s

Mus Musculus 8404 13094 1 101 0.428± 0.027 s
Homo Sapiens 8399 13543 1 106 0.482± 0.040 s

Universal Model 15638 28301 1 514 1.055± 0.042 s

3

E. Coli 72 95 20 9 0.249± 0.005 s
Salmonella 2436 3357 20 53 14.96± 0.15 s

P. Tricornutum 2172 4456 50 592 70.33± 39.00 s
C. Griseus 4456 6663 30 329 89.41± 3.47 s

Mus Musculus 8404 13094 50 422 294± 3 s
Homo Sapiens 8399 13543 100 564 640∗ s

Universal Model 15638 28301 200 2820 2380∗ s

4

E. Coli 72 95 20 9 0.283± 0.008 s
Salmonella 2436 3357 20 53 17.28± 0.16 s

P. Tricornutum 2172 4456 50 592 78.66± 39.01 s
C. Griseus 4456 6663 30 329 97.46± 3.47 s

Mus Musculus 8404 13094 50 422 336± 4 s
Homo Sapiens 8399 13543 100 564 741∗ s

Universal Model 15638 28301 200 2820 3032∗ s

5

E. Coli 72 95 20 9 0.234± 0.023 s
Salmonella 2436 3357 20 47 14.00± 0.26 s

P. Tricornutum 2172 4456 50 544 60.95± 21.36 s
C. Griseus 4456 6663 30 306 61.95± 1.01 s

Mus Musculus 8404 13094 50 383 378± 121 s
Homo Sapiens 8399 13543 100 528 584∗ s

Universal Model 15638 28301 200 2653 3124∗ s

In this table, m is the number of the metabolites (i.e., the number of rows in the S), n is the number
of the reactions (i.e., the number of columns in the S or the number of rows in the V), and c is the number
of columns in the V , L or U (which is 1 for the case that v is a vector in first two rounds). The sparsity

Fathi et al , Multi-Feasibility Variable Selection

score, s.c., is equal to ∥v∥1 for round 2 and is equal to ∥V ∥2,0 for rounds 3, 4, and 5. The gained score of
each round in the competition has had a strong relationship with this parameter. Note that as round 1 is
a feasibility problem, sparsity means nothing there.
In the datasets for round 4, the parameters λ are 7.125, 251.775, 133.68, 333.15, 392.82, 203.145, 212.2575,
respectively, which force a huge penalty for releasing Svj = 0 constraints and, therefore, have resulted in
the same result with round 3 according to our heuristic (25), which have made the set J in (26) to contain
all the columns for all datasets. In the datasets for round 5, the K parameters have been 4, 4, 10, 6, 10,
20, 40, respectively.
In our performance testing, the number of the iterations in the weighted algorithm has been set to 20 for
the round 2, 10 for the first six datasets in the rounds 3, 4, and 5, and 5 for the BiGG universal model in
the latter three rounds. Benchmarking has been done by the Julia library BenchmarkTools, using 10000
samples or any less number of samples during 300 seconds limit of running (containing at least one sample).
The aggregated results in the table are included in the mean ± std s/ms format, or the time∗s format for
the huge datasets on which only one sample has been taken.
All codes have been run on a home MacBook Pro PC with a 2.2 GHz Quad-Core Intel Core i7 processor,
16 GB 1600 MHz DDR3 memory, and Intel Iris Pro 1536 MB graphics.
Additionally, a benchmarking for the preprocessing ideas, run on the round 1 datasets, is reported in the
table (II):

Table II. The benchmarking for our preprocessing ideas

Dataset Running Time - No Process Running Time - Processed
E. Coli 0.37± 0.65 ms 0.119± 0.270 ms

Salmonella 0.354± 0.009 s 7.563± 3.607 ms
P. Tricornutum 0.410± 0.013 s 10.16± 3.57 ms

C. Griseus 1.273± 0.012 s 25.44± 9.85 ms
Mus Musculus 4.758± 0.160 s 72.02± 33.97 ms
Homo Sapiens 4.811± 0.043 s 71.92± 32.04 ms

Universal Model 22.21± 0.17 s 0.161± 0.003 s

which shows a significant improvement to the running time.

V. Codes and date availability
Each round has contained three turns, which are three datasets to be judged. The Julia codes, written

in Jupyter-notebook for each round (.ipynb file) and the data for all turns (folders T1, T2, and T3) for
each round are provided in these URLs:

• Round 1: https://github.com/Optimizer-Competition-Pandas/Round_1
• Round 2: https://github.com/Optimizer-Competition-Pandas/Round_2
• Round 3: https://github.com/Optimizer-Competition-Pandas/Round_3
• Round 4: https://github.com/Optimizer-Competition-Pandas/Round_4
• Round 5: https://github.com/Optimizer-Competition-Pandas/Round_5

Note that the MathOptInterface package is used for parsing the optimization problems, and the GLPK is
used as the linear programming solver.

https://juliaci.github.io/BenchmarkTools.jl/dev/
https://github.com/Optimizer-Competition-Pandas/Round_1
https://github.com/Optimizer-Competition-Pandas/Round_2
https://github.com/Optimizer-Competition-Pandas/Round_3
https://github.com/Optimizer-Competition-Pandas/Round_4
https://github.com/Optimizer-Competition-Pandas/Round_5
https://jump.dev/MathOptInterface.jl/v0.8.1/apimanual/
https://www.gnu.org/software/glpk/

Fathi et al , Multi-Feasibility Variable Selection

Acknowledgment
The authors gratefully acknowledge SOAL lab for organizing this competition. Mojtaba Tefagh would

like to thank Amir Daneshgar and Mohammad Hadi Foroughmand-Araabi for their insightful suggestions
and constructive feedbacks.

References
[1] Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[2] S. H. Fouladi and I. Balasingham. Recovery of linearly mixed sparse sources from multiple measurement vectors using

L1-minimization. In 26th European Signal Processing Conference (EUSIPCO), pages 563–567, 2018.
[3] S. H. Fouladi and I. Balasingham. On improving recovery performance in multiple measurement vector having dependency.

IEEE Access, 7:3287–3297, 2019.
[4] R. W. Heckel and H. Bölcskei. Sparse Signal Processing: Subspace Clustering and System Identification. Series in commu-

nication theory. Hartung-Gorre, 2014.
[5] Markus J Herrgård, Stephen S Fong, and Bernhard Ø Palsson. Identification of genome-scale metabolic network models

using experimentally measured flux profiles. PLOS Computational Biology, 2(7):1–11, 07 2006.
[6] Vinay Satish Kumar and Costas D. Maranas. Growmatch: An automated method for reconciling in silico/in vivo growth

predictions. PLOS Computational Biology, 5(3):1–13, 03 2009.
[7] Jong Min Lee, Erwin P. Gianchandani, and Jason A. Papin. Flux balance analysis in the era of metabolomics. Briefings

in Bioinformatics, 7(2):140–150, 04 2006.
[8] Nathan E Lewis, Harish Nagarajan, and Bernhard Ø Palsson. Constraining the metabolic genotype–phenotype relationship

using a phylogeny of in silico methods. Nature Reviews Microbiology, 10(4):291–305, 2012.
[9] Costas D Maranas and Ali R Zomorrodi. Optimization methods in metabolic networks. John Wiley & Sons, 2016.
[10] Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson. What is flux balance analysis? Nature Biotechnology, 28(3):245–248,

2010.
[11] S. Sun, D. Dai, and Z. Xu. Application of a GMMV-based multi-frequency inversion method to 3-d half-space inverse

scattering problems. In XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science,
pages 1–4, 2020.

[12] S. Sun, B. J. Kooij, and A. G. Yarovoy. Extension of the GMMV-based linear method to quantitative inverse scattering.
IEEE Antennas and Wireless Propagation Letters, 17(1):94–97, 2018.

[13] Jean-Luc Starck. Sparsity and inverse problems in astrophysics. Journal of Physics: Conference Series, 699:012010, mar
2016.

[14] C. Yang and J. Zhang. Two general methods for inverse optimization problems. Applied Mathematics Letters, 12(2):69 –
72, 1999.

[15] Yun-Bin Zhao. Sparse Optimization Theory and Methods. CRC Press, 2018.
[16] Jialiang Xu and Yun-Bin Zhao Dual-density-based reweighted l1-algorithms for a class of l0-minimization problems. J

Glob Optim, 2021.

http://soal.math.sharif.edu

	I. Competition Motivations and Background
	II. Problem Formulation and Methods
	III. Preprocessing and Data manipulations
	IV. Results
	V. Codes and date availability
	Acknowledgment
	References

