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Abstract— With COVID-19 and its variants still of concern globally, researchers
continue to develop mathematical models to capture the dynamics of the spread
of the infection. Many of these models utilize a compartmental framework of sub-
populations. The typical categories include, but are not limited to, susceptible, ex-
posed, infected, and recovered populations. These SEIR compartmental models are
used widely to model infectious diseases such as Zika, Dengue, and COVID-19. These
models typically vary in the types of compartments utilized as well as a plethora of
parameters. While current research suggests that COVID-19 spreads through the
interactions of multiple populations with one another, several of these models may
not fully account for such interactions. For instance, there is evidence that multiple
variants of the COVID-19 virus impact these sub-populations differently. In this pa-
per, we introduce a new multi-variant COVID-19 model that will help provide insight
into the dynamics of the spread of infections. Specifically, the dynamics of the sub-
populations are modeled through a coupled system of ordinary differential equations.
The basic reproduction number for this model is derived that can potentially inform
policy makers to make data-driven decisions. We also perform simulations to study
the influence of various parameters employed in the model.
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I. Introduction

SARS-CoV-2, also known as COVID-19, has had a historic impact across the globe since its first
designation as a pandemic in March 2020 by the World Health Organization (WHO). The virus has been
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so widespread that it has become difficult to find a family or person who’s life hasn’t been affected by
COVID-19. Since its first reported cases in December 2019 researchers have been working to understand
the dynamics of this disease. In particular, many mathematical models have been developed to better
understand the spread of COVID-19 as well as predict possible impacts of the disease such as expected
number of deaths due to the disease and number of possible hospitalizations over time. Through these
models researchers were able to make informed suggestions as to lessen the impact of the virus.

The primary methods to model the spread of infectious diseases are the Susceptible-Infected-Recovered
(SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) compartmental models [1]. These models utilize
a coupled system of ordinary differential equations (ODEs) that describe the flow of populations from one
state such as susceptible or infected to the next state such as exposed or recovered. These models are not
limited to the aforementioned categories as other models use compartments for social behaviors such as
face-mask usage and quarantining [2]. Models such as these aim to illustrate the impact of such behavioral
changes on the spread of a disease which in turn are used to guide policy-maker’s decisions on how to deal
with the disease at hand.

Along with focus focusing on social behaviors and dynamics [2, 3], a new consideration must be made:
COVID-19 variants of interest. In particular we seek to model the impact of variants of concern as defined
by the Centers for Disease Control and Prevention (CDC) and who with the possibility of being infected by
the given variant after recovering from COVID-19 and vice-versa. With variants such as Alpha for B.1.1.7
(U.K. variant), Beta for B.1.351 (South Africa), Gamma for P.1 (Brazil), Delta for B.1.617.2 (India),
Omicron for B.1.1.529 (South Africa), it is important to study the disease dynamics of these new threats.
This consideration is main focus of this work.

Note that these variants do not happen separately from the ongoing COVID-19 pandemic as they are
spreading simultaneously. Therefore this paper works to establish a model that captures the dynamics
of such a situation focusing on two simultaneous viruses while also taking into consideration some social
behaviors such quarantining and hospitalization. This model will take the classical SEIR model and utilize
a few social behaviors as presented in [2] and build upon them. The assumptions and choices of social
behaviors of this model is such that the model will be effectively represent the complex set of circumstances
of two viruses but simple enough to begin to understand the implications of such a situation.

This paper be outlined as follows. In section II, we present important definitions as well as the
mathematical underpinnings of our model. Here we present the flow diagram of the model as well as the
governing system of ODEs that are the computational basis of this model. In section III we state and
prove the basic reproduction number, R0, for the model. Section IV will update the baseline model given
in section 2 to include the possibility of those exposed to the virus as being able to also transmit the virus.
Section V will present numerical experiments and their corresponding graphs and implications of model
we have presented. Finally, section VI will be dedicated to conclusions and future work.

II. Mathematical Model and Governing Equations

A. Model and Sub-populations

In this work, an extended SEIR compartmental model is given that incorporates a simultaneous variant
of the COVID-19 virus, as well as quarantine, recovered, hospitalized and dead sub-populations. For
simplicity this model does not include vital dynamics such as birthrate and natural death rates. This model
is organized around the flow diagram (see Figure 1). The model includes the following sub-populations:

• Susceptible (S): Individuals who have not been infected with COVID-19 or the considered variant
• Exposed (Ei): Individuals who are in the incubation period of disease progression of virus i
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• Second Exposure (Ei,j): Individuals who have recovered from virus i and currently in the incu-
bation period of disease progression of virus j

• Infected (Ii): Individuals who have been infected with virus i
• Second Infection (Ii,j): Individuals who have recovered from virus i, and currently infected with
virus j

• Quarantine (Qi): Individuals that are quarantined after being infected with virus i
• Second Quarantine (Qi,j): Individuals that have recovered from virus i, and currently being
quarantined after being infected with virus j

• Hospitalized (Hi): Individuals who have been hospitalized by virus i
• Second Hospitalization (Hi,j): Individuals who have recovered from virus i and currently hospi-
talized for virus j

• Recovered (Ri): Individuals who have recovered from virus i
• Fully Recovered (R): Individuals who have recovered from virus i and j
• Dead (D): Individuals who did not survive either virus

Here we assume that the states Qi, Qi,j , Hi, Hi,j no longer spread COVID-19 or its variants but those who
have recovered from one virus can be infected at the same rate as someone who has not contracted either
virus.

Fig. 1. Flow diagram for the two variant COVID-19 model

The dynamics of the spread described is shown in the following flow diagram Figure 1.

B. Governing Differential Equations

The flow diagram in figure 1 is described with the following equations:
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dS

dt
= −

2∑
i=1

βiSIi
N

(1)

dE1

dt
=

β1SI1
N

− σ1E1(2)

dE2

dt
=

β2SI2
N

− σ2E2(3)

dI1
dt

= σ1E1 − λ1I1(4)

dI2
dt

= σ2E2 − λ2I2(5)

dQ1

dt
= λ1I1 − γ1Q1(6)

dQ2

dt
= λ2I2 − γ2Q2(7)

dH1

dt
= (1− q1)γ1Q1 − µ1H1(8)

dH2

dt
= (1− q2)γ2Q2 − µ2H2(9)

dR1

dt
= q1γ1Q1 + p1µ1H1 −

β2R1I1,2
N

(10)

dR2

dt
= q2γ2Q2 + p2µ2H2 −

β1R2I2,1
N

(11)

dE1,2

dt
=

β2R1I1,2
N

− σ2E1,2(12)

dE2,1

dt
=

β1R2I2,1
N

− σ1E2,1(13)

dI1,2
dt

= σ2E1,2 − λ2I1,2(14)

dI2,1
dt

= σ1E2,1 − λ1I2,1(15)

dQ1,2

dt
= λ2I1,2 − γ2Q1,2(16)

dQ2,1

dt
= λ1I2,1 − γ1Q2,1(17)

dH1,2

dt
= (1− q2)γ2Q1,2 − µ2H1,2(18)

dH2,1

dt
= (1− q1)γ1Q2,1 − µ1H2,1(19)

dR

dt
= q1γ1Q2,1 + q2γ2Q1,2 + p1µ1H2,1 + p2µ2H1,2(20)

dD

dt
= (1− p1)µ1(H1 +H2,1) + (1− p2)µ2(H2 +H1,2)(21)
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In a population of N individuals where N is the sum of all sub-populations, susceptible individuals S
move to the either exposed state E1 or E2 after interacting with individuals infected with COVID-19 or its
variant respectively. This transmission is represented by a proportion of the respective infected classes, I1
and I2 involved in the transmission and an infection rate that is proportional to the infected individuals.
This transmission rates are given by the constants β1 and β2. While an individual is in either exposed
state, E1 or E2, the virus has an incubation period, σ−1

1 and σ−1
2 such that by the end of this period,

individuals move to their respective infected state I1 or I2. At this point, individuals that are mostly
symptomatic, go into the appropriate quarantine state, Q1 and Q2 at a certain rate denoted by λ1 and
λ2. Quarantined individuals then enter either the recovered states, R1 and R2 or the Hospitalized states
H1 and H2 respective to the virus contracted at a proportion, q1 and q2 of the recovery rate γ1 and γ2
respectively. While in the hospitalization state individuals can either move to the respective recovered state
R1 or R2 or into the death state D at a proportion p1 and p2 of the recovery rate µ1 and µ2. This model
then allows for individuals to be be infected with a second virus after recovering from the first. The change
of states follow the same process as outlined above. Here we denote these states by E12 which represents
an individual who has recovered from virus 1 and is in the exposed state for virus 2. For this work we
assume that the rates that induce state changes are the same whether or not an individual is infected for
the first time or the second time. For example, an individual in the E12 will change states to I12 with the
same incubation period of σ−1

2 . The various rates in the diagram and equations are summarized in table I.

Table I. Symbols and definitions of parameters

Parameter Definition

βi Transmission rate of virus i per person per day
σi Rate at which individuals exposed to virus i are infected per day
λi Rate at which individuals infected with variant i are Quarantined per day
γi Rate at which individuals quarantined with virus i become hospitalized/recovered per day

µ−1
i Duration at which hospitalized individuals infected with virus i recover or die per day
qi Fraction of quarantined individuals infected with virus i recover per infection
pi Fraction of hospitalized individuals infected with virus i recover per infection

III. Basic Reproduction Number

In this section we will derive the basic reproduction number, R0 for this model. This number can
be used to quantify the transmission potential of two different variants of COVID-19 as modeled by the
system(1)-(21). R0 is the average number of secondary infections produced by a typical case of an infection
in a population where everyone is susceptible. We will use the Next Generation Matrix described in [4] to
solve for R0.

Theorem 1. The basic reproduction number R0 is given by

(22) R0 = max

{
β1
λ1

,
β2
λ2

}
Proof. Given infections states E1, E2, I1, I2, E1,2, E2,1, I1,2, I2,1 in equations (2)-(5) and (12)-(15) we

create vector F representing the inflow of new infections into the aforementioned infectious states. Given
S ≈ N in the beginning,



Yablonski et al , Spread of COVID-19 Variants of Concern

(23) F =

{
β1I1, β2I2, 0, 0,

β2R1I1,2
N

,
β1R2I2,1

N
, 0, 0

}
Similarly we define vector V by the outflow of equations (2)-(5) and (12)-(15) respectively.

V = {σ1E1, σ2E2,−σ1E1 + λ1I1,−σ2E2 + λ2I2, σ2E1,2, σ1E2,1,−σ2E1,2 + λ2I1,2,−σ1E2,1 + λ1I2,1}

Next, we now compute the Jacobian matrix F from vector F and Jacobian matrix V from vector V

F =



0 0 β1 0 0 0 0 0
0 0 0 β2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 β2R1

N 0

0 0 0 0 0 0 0 β1R2

N
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


V =



σ1 0 0 0 0 0 0 0
0 σ2 0 0 0 0 0 0

−σ1 0 λ1 0 0 0 0 0
0 −σ2 0 λ2 0 0 0 0
0 0 0 0 σ2 0 0 0
0 0 0 0 0 σ1 0 0
0 0 0 0 −σ2 0 λ2 0
0 0 0 0 0 −σ1 0 λ1


The Next Generation Matrix given by FV −1 can be calculated as:

FV −1 =



β1

λ1
0 β1

λ1
0 0 0 0 0

0 β2

λ2
0 β2

λ2
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 β2R1

λ2N
0 β2R1

λ2N
0

0 0 0 0 0 β1R2

λ1N
0 β1R2

λ1N

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The basic reproduction number is the maximum eigenvalue of FV −1. For this we take the determinant

of FV −1−λI and solve for the roots of the characteristic polynomial. Note that λ ̸= λ1, λ2 as it represents
the eigenvalues of the matrix.

det(FV −1 − λI) = λ4

(
β1
λ1

− λ

)(
β2
λ2

− λ

)(
β2R1

λ2N
− λ

)(
β1R2

λ1N
− λ

)
Note that

R1

N
,
R2

N
< 1 since we assume that the outflow of state S is partitioned between E1 and E2. This

implies that the basic reproduction number for this system is given as

R0 = max

{
β1
λ1

,
β2
λ2

}
.

□

Remark 1. The result given by theorem 1 implies that the basic reproduction number for the system
(1)− (21) is the largest ratio of the transmission rate to quarantine rate of the two variants of COVID-19.
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IV. Effect of Exposed population

One may also consider the impact of the interaction of exposed populations to cause new infections.
This can be modeled by updating equations (1) - (3) and (10) - (13) as follows:

dS

dt
= −β1S

N
(E1 + I1)−

β2S

N
(E2 + I2)(24)

dE1

dt
=

β1S

N
(E1 + I1)− σ1E1(25)

dE2

dt
=

β2S

N
(E2 + I2)− σ2E2(26)

dR1

dt
= q1γ1Q1 + p1µ1H1 −

β2R1

N
(E1,2 + I1,2)(27)

dR2

dt
= q2γ2Q2 + p2µ2H2 −

β1R2

N
(E2,1 + I2,1)(28)

dE1,2

dt
=

β2R1

N
(E1,2 + I1,2)− σ2E1,2(29)

dE2,1

dt
=

β1R2

N
(E2,1 + I2,1)− σ1E2,1(30)

A basic reproduction can also be derived for the updated system with the impact of the exposed states,
following the steps shown in Theorem 1. This gives the following new result.

Theorem 2. The basic reproduction number R0 is given by

(31) R0 = max

{
β1
σ1

+
β1
λ1

,
β2
σ2

+
β2
λ2

}
Proof. We follow the same process as shown in the proof for theorem ?? to calculate,

F =

{
β1(I1 + E1), β2(I2 + E2), 0, 0,

β2R1(E1,2 + I1,2)

N
,
β1R2(E2,1 + I2,1)

N
, 0, 0

}
and

V = {σ1E1, σ2E2,−σ1E1 + λ1I1,−σ2E2 + λ2I2, σ2E1,2, σ1E2,1,−σ2E1,2 + λ2I1,2,−σ1E2,1 + λ1I2,1}

Then the respective Jacobians can be calculated as:

F =



β1 0 β1 0 0 0 0 0
0 β2 0 β2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 β2R1

N 0 β2R1

N 0

0 0 0 0 0 β1R2

N 0 β1R2

N
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


V =



σ1 0 0 0 0 0 0 0
0 σ2 0 0 0 0 0 0

−σ1 0 λ1 0 0 0 0 0
0 −σ2 0 λ2 0 0 0 0
0 0 0 0 σ2 0 0 0
0 0 0 0 0 σ1 0 0
0 0 0 0 −σ2 0 λ2 0
0 0 0 0 0 −σ1 0 λ1


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The next generation matrix can then be computed as:

FV −1 =



β1

σ1
+ β1

λ1
0 β1

λ1
0 0 0 0 0

0 β2

σ2
+ β2

λ2
0 β2

λ2
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 β2R1

σ2N
+ β2R1

λ2N
0 β2R1

λ2N
0

0 0 0 0 0 β1R2

σ1N
+ β1R2

λ1N
0 β1R2

λ1N

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Next, we compute the characteristic equation as before with det(FV −1 − λI) = 0 which yields,

λ4

[
λ−

(
β1
σ1

+
β1
λ1

)][
λ−

(
β2
σ2

+
β2
λ2

)][
λ−

(
β2R1

σ2N
+

β2R1

λ2N

)][
λ−

(
β1R2

σ1N
+

β1R2

λ1N

)]
= 0

Since Ri < N for i = 1, 2, the basic reproduction numberis given by

R0 = max

{
β1
σ1

+
β1
λ1

,
β2
σ2

+
β2
λ2

}
□

Remark 2. The result given by theorem 2 implies that R0 for the updated system with (24) - (30) is
impacted by the rate of exposed people becoming infected along with the transmission rate and quarantine
rate of the two variants of COVID-19.

V. Computational Experiments

In this section, we study the dynamics of the system proposed in this work to understand the impact
of variants of concern.

A. Initial Conditions and Parameter Values.

The parameters for COVID-19 we employ are listed in table II while parameters for variants B.1.1.7
and B.1.427 are given in table III and IV. Note that these are only chosen for simplicity to demonstrate the
importance of studying variants and one may expand this work to new variants such as Omicron B.1.1.529
also once we have more reliable data.

Table II. SARS-CoV-2 parameters

Parameter Value Reference(s)

β1 .5 Assumed

σ−1
1 6 days [5]
λ1 .2 Computed

γ−1
1 5 days [2]

µ−1
1 14 days [5]
q1 .81 [2]
p1 .93 [5]
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For the parameters not listed in table III or IV, we assume that they are equal to their corresponding
parameters of table II. For our numerical computations we will assume that β1 = .5. Since the CDC
estimates that R0 = 2.5 [5] for COVID-19 we can then use the result of theorem 1 to estimate λ1.
Assuming the R0 estimation is referring only to the original virus we have that β2 = 0. Thus we have

R0 = max

{
β1
λ1

, 0

}
which implies that 2.5 =

.5

λ1
and hence λ1 = .2.

Table III. Variant B.1.1.7

Parameter Value Reference(s)

β2 .75 [6]
q2 .81 [7]
p2 .91 [7]

Table IV. Variant B.1.427

Parameter Value Reference(s)

β2 .6 [8]

Remark 3. Note that as scientific research continues to evolve, these parameters are subject to change.

With these initial conditions and parameters we can calculate the basic reproduction for various sce-
narios (See table V and table VI.) Note that because it is assumed that the quarantine rate λi and infection
rate σi are equal across the viruses, R0 is determined by whichever virus has the larger transmission rate
βi. To put these values into perspective, table VII gives R0 values of past infectious diseases.

Table V. Model (1)-(21)

Virus 1 Virus 2 R0

SARS-CoV-2 B.1.1.7 3.75
SARS-CoV-2 B.1.427 3

B.1.1.7 B.1.427 3.75

Table VI. Updated Model with
equations (24)-(30)

Virus 1 Virus 2 R0

SARS-CoV-2 B.1.1.7 8.25
SARS-CoV-2 B.1.427 6.5

B.1.1.7 B.1.427 8.25

Table VII. Basic Reproduction Numbers for well-known diseases

Disease R0 Reference
Measles 12-18 [9]

Chickenpox 10-12 [10]
Pertussis 5.5 [11]
Smallpox 3.5-6 [12]
COVID-19 2.4-3.4 [13]
HIV/Aids 2-5 [14]

Common Cold 2-3 [15]
Influenza 1.3 [16]
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B. Understanding the dynamics

To study the dynamics of the disease modeled by the system of ODEs (1) - (21), we employ a higher-
order Runge-Kutta method in MATLAB. For our simulation we used the population of Virginia, USA as
N = 8, 570, 400 which was around the population in April 2020. We assumed in this, the initial population
of the various groups in the system of equations were given to be the following: S0 = 7000000, E0

1 =
1000000, E0

2 = 7000, I01 = 490000, I02 = 7000, E0
12 = 1000, E=

2101000, I
0
12 = 700, I021 = 700. The rest of the

initial conditions for quarantined, hospitalized, recovered and dead were taken to be zero.
Figure 2 shows the impact of increasing the quarantine rate. Clearly as more people quarantine the

basic reproduction number R0 decreases. The figure suggests that one can get epidemic to vanish with
R0 < 1 if we are able to quarantine more than 90% of the population. While this maybe unreasonable, it
may be noted that by getting over 30% quarantines, we can get R0 < 2 which is very reasonable.

Fig. 2. R0 in response to increased quarantine

Next we plot the various susceptible, exposed, infected and recovered population fractions for those that
were infected once (Figure 3) and those that were reinfected by another variant (Figure 4). As expected
the peaks shift as people move from the first recovered states to being reinfected as they are exposed to
new variants.

We also plot the population fractions for all the infected populations including those that were infected
by one of the variants and then were reinfected by another in Figure 5. We also plot the two recovered
states for people who were infected by one virus and also plot the fully recovered state after they were
reinfected again in Figure 6. These graphs exhibit expected behaviors which can be used to inform policy.
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Fig. 3. The dynamics of those with
a single infection

Fig. 4. The dynamics of those in-
fected once being reinfected

Fig. 5. The dynamics of those with
a single infection

Fig. 6. The dynamics of those in-
fected once being reinfected

VI. Conclusions and Future Work

In this work we have created a COVID-19 model that incorporates a simultaneous variant as well as the
possibility to recover from one virus and be infected with the other. We then derived a basic reproduction
number for this model. Next we formed an updated model by allowing for infections to be spread by
individuals who have been exposed to the virus and derived a basic reproduction number for this updated
system. Finally, through simulations of these models we analyzed the role of multiple parameters and their
effects on different sub-populations.

In the future, we plan on adding more compartments to simulate social behaviors. In addition, we
will split the infected state to asymptomatic and symptomatic which will have their own infection and
quarantine rates. We will also look to modify the updated model by splitting the exposed state into
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carriers and non-carriers. We may also look into adding a third virus to the model. We hope to study the
impact of certain social behaviors such as face mask usage and lock-downs on the number of infections and
deaths. By adding a third virus, we may look to further understand interactions between these viruses and
the effectiveness of safety measures such as quarantining.
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mission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike
protein mutation.” MedRxiv, 2021.

[9] F.M. Guerra, S. Bolotin, G. Lim, J. Heffernan, S.L. Deeks, Y. Li, and N.S. Crowcroft, N. S., “The basic reproduction
number (R0) of measles: a systematic review.” The Lancet Infectious Diseases, 17(12), e420-e428, 2017.

[10] Ireland’s Health Services, “Varicella Hospitalisation Notifiable Outbreak Notifiable,” https://www.hse.ie/eng/health/

immunisation/hcpinfo/guidelines/chapter23.pdf, 2021.
[11] M. Kretzschmar, P.F., Teunis, and R.G. Pebody, R. G. “Incidence and reproduction numbers of pertussis: estimates from

serological and social contact data in five European countries”. PLoS medicine, 7(6), e1000291, 2010
[12] R. Gani, and S. Leach, S. “Transmission potential of smallpox in contemporary populations”, Nature, 414(6865), 748-751,

2001.
[13] M.A. Billah, M. M. Miah, and M.N. Khan, “Reproductive number of coronavirus: A systematic review and meta-analysis

based on global level evidence.” PloS one, 15(11), e0242128, 2020.
[14] National Ebola Training and Education Center, “Playing the Numbers Game: R0,” https://web.archive.org/web/

20200512013302/https://netec.org/2020/01/30/playing-the-numbers-game-r0/, 2021.
[15] C. Freeman,“Playing the Numbers Game: R0,” The Telegraph, 2014.
[16] G.M.A.M. Chowell, M.A. Miller, C. Viboud, “Seasonal influenza in the United States, France, and Australia: transmission

and prospects for control.” Epidemiology and Infection, 136(6), 852-864, 2007.

https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html#Concern
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html#Concern
https://www.gov.uk/government/publications/nervtag-paper-on-covid-19-variant-of-concern-b117
https://www.hse.ie/eng/health/immunisation/hcpinfo/guidelines/chapter23.pdf
https://www.hse.ie/eng/health/immunisation/hcpinfo/guidelines/chapter23.pdf
https://web.archive.org/web/20200512013302/https://netec.org/2020/01/30/playing-the-numbers-game-r0/
https://web.archive.org/web/20200512013302/https://netec.org/2020/01/30/playing-the-numbers-game-r0/

	I. Introduction
	II. Mathematical Model and Governing Equations
	III. Basic Reproduction Number
	IV. Effect of Exposed population
	V. Computational Experiments
	VI. Conclusions and Future Work
	Acknowledgment
	References

