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Abstract. This paper's primary purpose of this study is to investigate the constant-roll 

inflationary scenario with anisotropic conditions concerning the Einstein-æther Scalar-tensor 

Cosmology in noncommutative phase space. Hence, we present the point-like Lagrangian, which 

represents the field equations of the Einstein-æther Scalar-tensor model. According to the 

constant-roll conditions, we take the anisotropic constant-roll inflationary scenario in 

noncommutative phase space and calculate some cosmological parameters of the mentioned 

model, such as the Hubble parameter, potential, etc. 
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1 Introduction 

 
   One of the most famous problems researchers try to solve with different theories is quantum gravity. 

A common feature that can be found in all topics related to quantum gravity is called the Lorentz 

violation [1]. However, various gravitational models facing the Lorentz violation have recently received 

much attention [2–3]. One of the theories of gravity that has received much attention in connection with 

Lorentz's violate is called the Einstein-æther theory [4]. There exist quantities of the unitary time-like 

vector field, the æther field. In the Einstein-Hilbert action Integral Selecting, this field violates Lorentz 

symmetry in the preferred frame. The limitation of Einstein’s General Relativity lives while the 

preservation of locality and covariance formulation is guaranteed in Einstein-æther theory. The 

mentioned theory, Einstein-æther theory, is called a second-order theory, used to describe different 

gravitational systems [5]. Einstein-æther theory has many features, and the cosmological applications 

of this theory have been widely discussed in the literature, including the description of the classical 

limit of Horava-Lifshitz. Of course, the critical point here is that the opposite is impossible [6]. Of 

course, from another point of view, scalar fields play a vital role in describing the universe. The field 

used to describe the early acceleration era of the universe is known as the inflaton field. In addition, 

scalar fields play a significant role in explaining the late-time acceleration as the solution to the dark 

energy problem. This paper aims to present a new challenge that has not been explored, namely the 

constant-roll inflationary scenario for the Einstein-aether scalar-tensor model in the noncommutative 

phase space, and compare the results with other theories mentioned in the literature. One of the theories 

that have led to the most important challenges in cosmology so far is called Einstein’s theory of general 

relativity, which has undergone generalizations and modifications [7]. Among these modifications, 

which have exciting features and results, are modifications of the renormalizability of quantum field 

theory, which somehow encounters a particular framework that we discuss in this article, called 

noncommutative space-time. Noncommutative phase space has been addressed in various theories of 

cosmology, and its various cosmological applications to different theories and frameworks have been 

discussed. The results have been compared with the latest observable data. You can see for further study 

in [8]. In many calculations, the effects of noncommutative parameters have been studied in various 

types of cosmological theories such as power-law inflation, measurement of CMB, etc. [9]. Researchers 

have recently studied the effects of noncommutative parameters on the inflation scenario of constant 

rolling in the face of various structures such as fermion systems, modified Brans-Dicke cosmology, and 

other cosmological forms; results are compared with the latest observable data [10]. The constant-roll 

inflation scenario has also been of great interest to researchers recently. In this theory, instead of using 

slow-rolling formalism for inflationary studies, they use a particular condition called the constant-roll 

condition, which challenges inflation scenarios and provides analytical and accurate answers for some 

cosmological parameters such as the Hubble parameter, potential, scale factor, and so on. This theory 

has been widely discussed in the literature. Such a condition has challenged various structures of 
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effective theories such as low energy effective theory, f(R) gravity, and other modified gravitational 

theories. The results with the latest observational data and accepted and other theories in the literature 

have yielded exciting results. Some of these works can be found in [11].  

 

The Model  

 
  Recently, different types of Einstein-aether cosmological models with the scalar fields have been 

introduced, and some work has been done in this field in the literature [12]. Among them, the potential 

of a scalar field for the quintessence field is assumed as a function of specific aether field variables, and 

its structures are challenged, which has been studied as a general and basic model. Kanno and Soda [13] 

with the introduction of specific Lagrange, attracted the attention of the scientific community. They 

introduced an integral action concerning the Einstein-aether coupling parameters, a scalar field function. 

Such a study led to the fact that this cosmic model experiences two periods of inflation. When the scalar 

field is dominant, we will have a slow-roll era, and when the aether field contributes to the cosmological 

fluid, the Lorentz violating state will be established. With respect to [13] the results were presented, 

including the dynamics of the chaotic inflationary model. The interpretations were used to introduce 

toy models to study structures such as the Lorentz violating DGP model with no ghosts [14]. The above 

model has been extensively studied in the literature by researchers, and its various cosmological 

applications have been investigated, among which you can see in [14]. The Lorentz violating study has 

also been studied to analyze cosmological histories and cosmological observations and found that 

Einstein-aether cosmology can be used to describe cosmological observations [15]. Meanwhile, the 

study of the dynamics models by aether field has been the subject of work of many researchers, and a 

lot of work has been done that for further research you can see [16,17,18,19,20]. Some researchers have 

also studied Einstein-aether scalar field cosmology using exact symmetry analysis. Among the most 

important work done by researchers in recent years, that have quantized in Einstein-aether scalar field 

cosmology. Using the descriptions detailed in [13] It is discussed that the generalization of the 

gravitational model can be considered and a scalar field assumed in the Jordan framework, i.e., a scalar 

field that is coupled with the gravitational section. The Einstein-aether scalar-tensor gravitational model 

can be considered an integral action as S = SST + Saether, Where difined as; 
 

SST = ∫   d 4x √ −g [ F(φ)R + gµνφ;µφ;ν /2 + V (φ) ]    (1) 
 

Saether = − ∫   d 4x √ −g [ β1(φ)Uν;µ Uν;µ + β2(φ)(gµν Uµ;ν)2 + β3(φ)Uν;µ Uµ;ν + β4(φ)UµUνU;µUν − λ(UµUν + 1)]     

(2) 
In the above equation, we have a series of parameters such as β1, β2, β3, and β4 coefficient functions 

which describe the coupling between the aether field and the scalar field, and (λ) Lagrange multiplier, 

which specifies the unitarian of the aether field (UµUµ + 1 = 0). Also, the homogeneous and isotropic 

universe is described using the FLRW flat metric according to the cosmological structures, which is 

mentioned as ds2 = −N2 (t)dt2 + a2 (t)[dx2+dy2+dz2], Here, N(t) and a(t) specify the lapse function and 

scale factor, respectively, which can explain the three-dimensional radius of the Euclidean space. 

According to the above explanations and equations, the Lagrangian point-like equation of the mentioned 

model, which can describe the field equations, is written in the following form;  
 
L (N, a, da/dt,  φ, dφ/dt)= 1 /N [ 6A(φ)a(da/dt)2+6B(φ)a2 (da/dt)2 dφ/dt + 1/2 a3 (dφ/dt)2 ] − N a3V (φ) 

(3) 
3 Noncommutative phase space 
 

   Since Einstein’s theory of gravitation is not suitable for explaining the structures of the universe at 

very high energies, researchers have proposed alternatives that result from the modification or 

expression of theories with new systems. In this regard, various theories and formulations can be 

mentioned, including the structure Snyder [7,8] Which describes a specific set of the NC spacetime 

coordinates. This structure introduces a short-length cutoff called the noncommutative parameter, 
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which can modify features such as renormalizability properties of relativistic quantum field theory. 

[7,8]. NC effects can be significant when dealing with scales where the effects of quantum gravity are 

substantial. Since the problem of cosmological inflation at such energy scales has significant 

challenges, the use of such deformed phase space scenarios at these scales seems appropriate to study 

such a dynamic phase of the universe. In general, such a structure of spacetime has recently been 

considered by researchers, and many of its cosmological applications have been studied and compared 

with the latest observable data as well as other works in the literature. For example, clearly in [21] NC 

spacetime affected on power-law inflation has been investigated and showed a specific function of 

running the spectra index. We obtain here a specific type of these achievements, which is a particular 

type of canonical noncommutativity using an appropriate deformation on the classical phase space 

variables. One of the most important relations that we will benefit from in the calculations is the 

deformed Poisson bracket between the canonical conjugate moment, expressed as {Pa, Pφ} = θφ3. We 

can also apply the following formulas in our calculations. {Pa, f(Pa, Pφ)} = θφ3 ∂f ∂Pφ  and {Pφ, f(Pa, 

Pφ)} = −θφ3 ∂f ∂Pa . By tending the parameter (θ) to zero, all the above equations are recovered to 

standard commutative equations. From this relation, the Hamiltonian is calculated as follows; 
H = 1 /N [ P2

φ /2a3 + 846a5 (A − 3B2 )3/(aPa-6B Pφ)2+Na3V(φ)          (4) 
we calculate the equations as follows; 

da/dt = {a, H} = 1 /N [ 864a5 (A − 3B2 )3(2 aPa-12 aB Pφ)-1]                         (5) 

    

dφ/dt = 1 /N [ Pφ a3 + 864a5 (A − 3B2 )3(-12 aB Pφ+36B)-1]                (6) 

 

dPa /dt= 1 /N [3P2
φ/2a4+ θφ3 /a3 Pφ − 864(A − 3B2 )35a4 /(aPa − 6BPφ) + 864a5 (A − 3B2 )3(-2aPa

2+12 Pa 

Pφ-12aB Pa θφ3+36B θφ3)-1]                                       (7) 

 

dPφ/dt = 1/N [ 864a5/(aPa − 6BPφ)2 − 3A2A’+18A2BB’− 108AB3B’−27A’B4 + 162B5B’ + 864a5(A − 3B2)3(-
2a2 θφ3Pa+12aB’PaPφ+12aBPφθφ3-36B’ Pφ)-1]  +Na3V’(φ)                  (8) 

Now according to the above equations, and dPN/dt = P2
φ /2a3N2 + (846a5 (A − 3B2 )3 / (aPa -6BPφ )2N2) -

a3V(φ) with respect to N=1, we can calculate the Einstein-æther scalar-tensor cosmology equations in 

the non-commutativity phase space in the following form; 
3[(da/dt)/a]2=8πG(dφ/dt /2 +V)                           (9) 

 
[(d2a/dt2)/a]+2[(da/dt)/a]2= - 8πG[dφ/dt /2 -V+216(A − 3B2 )3 θφ3/(A2A’+B2B’)]         (10) 

we use equations (9) and (10); in this case, we will have; 
[(d2a/dt2)/a]-[(da/dt)/a]2=−(dφ/dt)2 − 216(A − 3B3)2 θφ3 /(A2A’ + B2B’)            (11) 

Here we use the Hubble parameter definition H = (da/dt)/ a and rewrite equation (11) as follows; 
dH/dt= −(dφ/dt)2 − 216(A − 3B2)3 θφ3 /(A2A’ + B2B’ )              (12) 

We can calculate the parameter dφ/dt as follows using a straightforward calculation with respect to 

dH/dt= (dH /dφ)dφ/dt; 
dφ/dt = − 1/ 2 dH /dφ ± 1 /2 [(dH dφ)2-864(A − 3B2)3 θφ3 /(A2A’ + B2B’ )]1/2          (13) 

We derivative from the above equation, and the relation used in the constant-roll inflation scenario 

such as (d2φ/dt2) = −(3 + α)Hφ, we will have; 
− (3 + α)H = − 1/ 2 d2H dφ2 ± [ d2H dφ2 dH/ dφ – ((864[ 3A2A’ − 18AA’B2 − 18BB’A2 + 27B4 + 108AB’B3 
− 162B’B5] θφ3 × 3θφ2 (A − 3B2 )3 ) × (A2A’ + B2B’ ) − 864(A − 3B2)3 θφ3 ( A”A2 + 2AA’2 + 2BB’2 + 
B2B”))/(2[(dH dφ)2-864(A − 3B2)3 θφ3 /(A2A’ + B2B’ )]1/2]                                              (14) 
if we consider parameters such as (θ), A, and B as zero, equation (14) becomes an ordinary equation 

in the literature. In fact, in this case, equation (14) becomes two equations, one zero and the other 

becomes the following form. d2H/ dφ2 − (3 + α) H = 0. The above equation is an ordinary differential 

equation whose answer will be calculated as follows; 

H = c1 exp(√3 + α)+ c2 exp(−√3 + α)                               (15) 
Now we have to assume a particular ansatz to solve the whole equation (22) that contains essential 

parameters such as (θ), A, and B so that the consequence of these parameters on significant quantities 

and parameters such as Hubble parameter and potential can be investigated. Hence we will have; 
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H = c1 exp(λ(θ, A, B) √3 + α)+ c2 exp(−λ(θ, A, B) √3 + α)                               (16) 
The parameter (λ) can be calculated directly by placing (25) in the equation (22). By calculating this 

parameter (λ) and placing it in equation (25), we can calculate the explicit relationship for the Hubble 

parameter according to different boundary conditions. Then we can use it to calculate other quantities 

such as Hubble parameter. In this way, we can have the Hubble parameter by creating the appropriate 

boundary conditions. By calculating the Hubble parameter, all other important quantities such as 

potentialوscale factor and velocity field (dφ/dt) and other quantities considered in the inflation 

scenario can be quickly investigated. Therefore, in the continuation of the article, we assume two 

boundary conditions and calculate the Hubble parameter appropriate to each boundary condition. 

Finally, we summarize the results of our work. Due to the large of potential sentences V, etc., their 

calculation is ignored. Therefore, we know that other desired quantities can be quickly and directly 

calculated by investigating a Hubble parameter. we apply the first boundary condition (c1 = c2 = M /2) 
to equation (16). In the following, different answers are obtained for the Hubble parameter, in which 

we consider only the positive solution. Therefore, according to the concepts mentioned earlier, the 

Hubble parameter is calculated according to the first boundary condition in the following form; 
X= 3√ 3 [ 2(3 + α)3/2 (−3 + √ 3φ + √ 3 + α)2 (A”A2 + B2B” + 2AA’2 + 2BB’2)/ (27√ 3B4B’ + AA” + 2AA’B2 + 
64AB”B3) − φ2 (3A2A’ + 18AA’B2φ − 162B’B5φ + 9B’ (−2 + 3B’ + 2B’φ))θ /(A2A’ + B2B’ )2 + 864(A − 3B2)3 
θφ3 (2AA’2 + B(2B’2 + BB’ )) + A2A’/ (A2A’ + B2B’ )4 ], 
Y = 2(M2φ2 (3 + α)2 (−6 − α + 2√ 3 √ 3 + α) , 
H = M cosh [ φ ( M(3 + α) – X/Y )/ 2 √ 3(3 + α)(M + M √ 3 + α/√ 3)].                              (17) 
Now, using the above equation, we can calculate the potential for the first case, and another important 

parameter, i.e., (dφ/dt). other quantities such as scale factor can be calculated according to the 

definition of the Hubble parameter. In the continuation of this article, we apply the same calculations 

for the second boundary condition.  We apply the second boundary condition (c1 =M/2, c2 = -M /2) to 

equation (16). Hence the Hubble parameter is calculated according to the second boundary condition 

as follow; 
O = 27θφ[ (A2A’ + B2B’) (162A2 + 18AA’φ − 6AB2 + 9B’ (−2AA’− 12ABB’ + 3B’ + 36B’B5) ))− 864(A + 
3B2)3φ + 2B’φ(2AA’2 + B(2B’2 + BB’ ) + A2A”) + (A2A”+18AA’+B2B” φ) ×(-3AA’(-3+ α) φ), 
S= M √ 3 + α √ M2 (3 + α)(−3 + φ2 (3 + α))(A2A’ + B2B’ )4, 
H = M sinh [φ ( (3 + α) + √ 162M/ √M2(3+α)(−3+φ2(3+α)2) – O/S )/ 12√ 3(3 + α)].          (18) 
Also, according to the previous subsection, each of the parameters and quantities such as potential and 

dφ/dt and other quantities such as scale factor for this case can be calculated. 

 

Concluding remarks  
In this paper, the primary purpose of this study was to investigate the constant-roll inflationary 

scenario with anisotropic conditions concerning the Einstein–æther Scalar-tensor Cosmology in 

noncommutative phase space. That is, we first introduced an Einstein–æther scalar-tensor 

cosmological model. In this structure, in action integral of scalar-tensor, one is introduced æther field 

with æther coefficients that it be a function of the scalar field, which is, in fact, a kind of extender of 

the previous Lorentz-violating theories. Hence, we presented the point-like Lagrangian, which 

represents the equations of the Einstein–æther Scalar-tensor model. Then we calculated the 

Hamiltonian of our model directly. According to the noncommutative phase space characteristics, we 

obtained the some equations of this model. In the following, according to the constant-roll conditions, 

we studied the anisotropic constant-roll inflationary scenario and calculated some cosmological 

parameters of the mentioned model, such as the Hubble parameter, potential, etc. The findings of the 

mentioned paper can be extended to other scalar-tensor theories and challenge their cosmological 

applications. The model mentioned in this paper or other models can also examine the scalar-tensor 

cosmology in different contexts and compare the results. The findings of this article can be challenged 

with a new idea that has recently been very much of interest to researchers, namely to the swampland 

program, and compare the results with the latest observable data. It is also possible to study different 

theories of cosmology in the noncommutative phase space and select the best models among them that 

are most consistent with the latest observable data. Also, examining different types of cosmological 
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models with such a proposed structure provided in this paper can propose a new classification for 

cosmological models. 
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