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Abstract. In this work, we suggest an approximate analytical solution of the Balitsky-
Kovchegov (BK) equation in momentum space using a method called the homotopy
perturbation method (HPM). With some change of variables and the truncation of the
BFKL (Balitsky-Fadin-Kuraev-Lipatov) kernel, the BK equation in momentum space
can be transformed into the FKPP (Fisher-Kolmogorov-Petrovsky-Piscounov) equation.
Observed geometric scaling at small-x at HERA and travelling wave solution of the
FKPP equation are similar. The solution of the BK equation obtained in this work also
suggests the travelling wave nature of the measured scattering amplitude N(k, Y)
plotted at various rapidities. The solution obtained in his work can be helpful in further
phenomenological studies at high-density QCD.
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1 Introduction

One of the most important phenomena of QCD at high energies or equivalently at small-x
(Bjorken x) is the growth of hadronic cross-sections. Hadronic cross-sections have been
incited by states with high partonic densities at small-x. Many theoretical and
phenomenological efforts have been made to understand and explain the high-density QCD at
small-x. Let us talk only about gluon densities at very small-x as one can neglect quark
densities there. The fast growth of gluons at small-x is well described by the BFKL equation
[1, 2]. This equation can be derived with perturbative QCD (pQCD) by resuming leading
logarithms of energies expressed in terms of x such as In(1/x) > In(Q?/u?), where Q and
u being the photon virtuality and renormalization scale respectively. It is seen from the
solution of the BFKL equation that the measured scattering amplitude N(k, Y) (k being the
transverse momentum and Y being the rapidity of evolved gluons) and hence the total cross-
section exhibits an exponential growth with rapidity Y. At very small-x, the rapidly increased
gluon densities need to be tamed down to hold the unitarity and hence Froissart-Martin bound
[3]. Froissart-Martin bound says, the total cross-section of a given process cannot grow faster
than the logarithm of energy squared. Thus, at very small x or high energies, the BFKL
equation violates the unitarity and hence Froissart-Martin bound. So, its applicability is
limited and cannot be used at arbitrarily high energies.

The above problems faced by the BFKL equation are to be addressed to understand the
physics at small-x. The solution is that at high energies or small-x, gluons themselves start to
recombine and get saturated finally. The first idea of gluon-gluon recombination is addressed
in ref. [4-8]. The gluon-gluon recombination will tame down the gluon density and saturation
of gluons will solve the unitarity problem. BFKL equation, being linear, could not address the
nonlinear effect of gluon recombination and saturation and hence is unable to explain implicit
physics at high-density QCD.
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It is imperative to understand the implicit physics in the saturation region of gluons at
small-x. In this region, linear QCD evolution equations are replaced by the nonlinear QCD
evolution equations, helping to understand the gluon-gluon recombination and saturation
effect. The nonlinear evolution equations have important features dealing with the saturation
effect as they contain damping terms that reflect the saturation effect arising out of gluon-
gluon recombination. The Jalilian-Marian-lancu-McLerran-Weigert-Leonidov-Kovner
(JIMWLK) equation [9-12] permits gluon saturation in high-density gluon region at small-x
that addresses the nonlinear correction using the Wilson renormalization group approach.
However, it is complicated to solve the JIMWLK equation because of its complex nature, and
hence unable to apply it in phenomenological studies. Instead, its mean filed approximation
BK equation [13-16] is studied most in the context of saturation effect. Though, it is tough to
solve the BK equation using general methods. BK equation is an integrodifferential equation
in coordinate space that can be transformed into momentum space resulting in a partial
differential equation. Analytical solutions to the BK equation proposed recently with different
approaches using some approximations can be found in ref. [17-22]. These analytical
solutions shed light on the ability of the BK equation in explaining gluon saturation and its
application in the high-energy hadron scattering phenomena.

In this work, we suggest an approximate analytical solution to the BK equation using the
homotopy perturbation method (HPM) [23, 24]. The BK equation in momentum space with
some change of variables and truncation of the BFKL kernel can be transformed into the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [17-19]. The FKPP equation [25,
26] is a partial differential equation that belongs to the reaction-diffusion equation in
statistical physics. Observed geometric scaling phenomena at small-x at HERA can be related
to the travelling wave solution of the FKPP equation [27]. The transition of the scattering
amplitude into the saturation region is similar to the formation of the front of the travelling
wave of the FKPP equation [17]. We obtain the solution of the BK equation which also
suggests the travelling wave nature of the solution. The solution of the BK equation obtained
in this work can be helpful for further phenomenological studies in light of present and future
accelerator facilities.

We organize the paper as follows. In section 2, we discuss the relation between the BK and
the FKPP equations. The solution of the BK equation is presented in section 3. The summary
and conclusion are presented in section 4.

2 Relation between the BK and FKPP equations

The relation between the BK and FKPP equations has been found in the pioneering work
done by S. Munier and R. B. Peschanski [17-19]. In this section, we discuss how to relate the
BK equation with the FKPP equation following their work.

BK equation is about energy dependence of scattering amplitude at small-x, it is often
convenient to carry out work in the pQCD dipole picture of deep inelastic scattering (DIS)
[28-31]. This picture is known as the dipole model, which is valid at small-x. The main
advantage of the dipole picture of DIS is the factorization of the scattering process into
several steps, resulting in smooth use of pQCD. In the dipole picture, an incoming virtual
photon after fluctuation changes to a quark-antiquark dipole. The quark-antiquark pair then
scattered off the target proton and recombines to form some final state particles. In reference
to the dipole picture of DIS, in the leading logarithm approximation of pQCD, the cross-
section in terms of the total rapidity (Y) and the virtuality of the photon (Q) factorizes to [27]
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where z being the longitudinal momentum fraction of the quark of the virtual photon,
W(z, xy,Q) is the photon wave function on a quark-antiquark dipole of its size x;. N(Y, xy1)
is the forward dipole-proton scattering amplitude.

Within the large N, approximation at fixed coupling and for a homogeneous nuclear target,
the measured scattering amplitude N(k,Y) at transverse momentum k and total rapidity Y
obeys the BK equation in momentum space given by [15]

ayN = (YX(_OL)N - (YNZ , (2)
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p ) ko being some low momentum scale at fixed. The expansion of the BFKL kernel

around ¢ = % has been suggested in ref. [17], and with this expansion equation (2) reduces to
the nonlinear partial differential equation given by
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the equation (3) turns into the FKPP equation for u(t, x), can be expressed as [17]
o.u(t,x) = 92u(t,x) + u(t,x) — u?(t, x). (5)

Thus, with some change of variable transformation, it is seen that the BK equation (3) can be
transformed to the above equation (5), which is the famous FKPP equation.
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3 Solution of the BK equation with HPM

Given the discussion of the relation between the FKPP and the BK equations discussed in the
previous section, let us solve the BK equation for the scattering amplitude N(k,Y). The
solution of the BK equation (3) in connection with the equation (5) for the scattering
amplitude N (k,Y) using the HPM can be written as

Noe” (6)
1— Ny + Npe” ’

N(k,Y) =

where N, is the initial condition. Once the initial condition is known to us, the solution of the
BK equation gives the scattering amplitude N (k, Y) at any given rapidity Y > 0. In this work,
we will use the following initial condition given by K. Golec-Biernat and M. Wusthoff

(GBW), introduced first in ref. [32]
r2Q%
(=)

QZ, is the fit parameter, called the initial saturation scale squared. This initial condition can
simply be Fourier transformed into momentum space analytically and applied to the BK
equation in momentum space. The momentum space result of the GBW initial condition can
be written as

NEBY(r,Y =0) =1 —exp

2
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r'(0,k%/Q3) is the incomplete gamma function. At large values of k?/Q?2,, this behaves as
k? k?
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Therefore,

Substitution of the above equation in equation (6) for the initial condition N,, we obtain the
scattering amplitude N (k,Y) with GBW as the initial condition
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This is the approximate analytical solution of the BK equation (3). The evolution of the
scattering amplitude at different rapidities can be seen in Fig. 1
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Figure 1. The solution of the BK equation in momentum space, N (k), at
various rapiditiesY=2,Y=5,Y=9,Y=15,Y=21and Y =

4 Summary and conclusion

This work has suggested an approximate analytical solution of the BK equation using the
HPM. The relation between the geometric scaling phenomena of the solution of the BK
equation and the travelling wave solution of the FKPP equation, as suggested by S. Munier
and R. Peschanski in their pioneering work, has guided the scientific community working in
the field of gluon saturation. In this work, we have started our discussion with the relation
between the BK and FKPP equations. We carried out work in the pQCD dipole picture of
DIS in which the measured scattering amplitude N(k,Y) obeys the BK equation in the
momentum space frame to work in the context of at least travelling wave solution and the
geometric scaling. Afterward, with some change of variables and a slight approximation in
the BK equation, we ended with the approximated analytical solution of the BK equation in
the momentum space. We plotted the obtained solution, equation (10), at different
rapidities in Fig. 1 to check the travelling wave nature of the solution. Indeed, one can see
the solution’s travelling wave nature. It indicates that at high energies, the scattering
amplitude behaves as a wave travelling from the region N = 1to N = 0 as k increases
without being changed in the profile. It is indeed a vital physical result of this travelling wave
approach.

The solution obtained in this work can be helpful in further phenomenological studies in
high-density QCD and saturation regions. However, it is going to be interesting to observe
whether this type of travelling wave solution and geometric scaling exist or not at very high
energies when EIC (Electron-lon-Collider) [33] and other future projects run operations.
Nevertheless, the BK equation with truncation of the BFKL kernel successfully explains the
observed geometric scaling and the travelling wave nature of its solution at current
accelerator facilities. We must rely on the future acceleration facilities for precise
measurements of observed phenomena and their confirmation.
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