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Abstract. In this work, we suggest an approximate analytical solution of the Balitsky-

Kovchegov (BK) equation in momentum space using a method called the homotopy 

perturbation method (HPM).  With some change of variables and the truncation of the 

BFKL (Balitsky-Fadin-Kuraev-Lipatov) kernel, the BK equation in momentum space 

can be transformed into the FKPP (Fisher-Kolmogorov-Petrovsky-Piscounov) equation. 

Observed geometric scaling at small-x at HERA and travelling wave solution of the 

FKPP equation are similar. The solution of the BK equation obtained in this work also 

suggests the travelling wave nature of the measured scattering amplitude N(k, Y) 

plotted at various rapidities. The solution obtained in his work can be helpful in further 

phenomenological studies at high-density QCD. 
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1 Introduction 

 

One of the most important phenomena of QCD at high energies or equivalently at small-x 

(Bjorken x) is the growth of hadronic cross-sections.  Hadronic cross-sections have been 

incited by states with high partonic densities at small-x. Many theoretical and 

phenomenological efforts have been made to understand and explain the high-density QCD at 

small-x. Let us talk only about gluon densities at very small-x as one can neglect quark 

densities there. The fast growth of gluons at small-x is well described by the BFKL equation 

[1, 2]. This equation can be derived with perturbative QCD (pQCD) by resuming leading 

logarithms of energies expressed in terms of x such as   (   )    (     )  where   and 

  being the photon virtuality and renormalization scale respectively. It is seen from the 

solution of the BFKL equation that the measured scattering amplitude N(k, Y) (k being the 

transverse momentum and Y being the rapidity of evolved gluons) and hence the total cross-

section exhibits an exponential growth with rapidity Y. At very small-x, the rapidly increased 

gluon densities need to be tamed down to hold the unitarity and hence Froissart-Martin bound 

[3]. Froissart-Martin bound says, the total cross-section of a given process cannot grow faster 

than the logarithm of energy squared. Thus, at very small x or high energies, the BFKL 

equation violates the unitarity and hence Froissart-Martin bound. So, its applicability is 

limited and cannot be used at arbitrarily high energies. 

    The above problems faced by the BFKL equation are to be addressed to understand the 

physics at small-x. The solution is that at high energies or small-x, gluons themselves start to 

recombine and get saturated finally. The first idea of gluon-gluon recombination is addressed 

in ref. [4-8]. The gluon-gluon recombination will tame down the gluon density and saturation 

of gluons will solve the unitarity problem. BFKL equation, being linear, could not address the 

nonlinear effect of gluon recombination and saturation and hence is unable to explain implicit 

physics at high-density QCD.     
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    It is imperative to understand the implicit physics in the saturation region of gluons at 

small-x. In this region, linear QCD evolution equations are replaced by the nonlinear QCD 

evolution equations, helping to understand the gluon-gluon recombination and saturation 

effect. The nonlinear evolution equations have important features dealing with the saturation 

effect as they contain damping terms that reflect the saturation effect arising out of gluon-

gluon recombination. The Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner 

(JIMWLK) equation [9-12] permits gluon saturation in high-density gluon region at small-x 

that addresses the nonlinear correction using the Wilson renormalization group approach. 

However, it is complicated to solve the JIMWLK equation because of its complex nature, and 

hence unable to apply it in phenomenological studies. Instead, its mean filed approximation 

BK equation [13-16] is studied most in the context of saturation effect. Though, it is tough to 

solve the BK equation using general methods. BK equation is an integrodifferential equation 

in coordinate space that can be transformed into momentum space resulting in a partial 

differential equation. Analytical solutions to the BK equation proposed recently with different 

approaches using some approximations can be found in ref. [17-22]. These analytical 

solutions shed light on the ability of the BK equation in explaining gluon saturation and its 

application in the high-energy hadron scattering phenomena. 

    In this work, we suggest an approximate analytical solution to the BK equation using the 

homotopy perturbation method (HPM) [23, 24]. The BK equation in momentum space with 

some change of variables and truncation of the BFKL kernel can be transformed into the 

Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation [17-19]. The FKPP equation [25, 

26] is a partial differential equation that belongs to the reaction-diffusion equation in 

statistical physics. Observed geometric scaling phenomena at small-x at HERA can be related 

to the travelling wave solution of the FKPP equation [27]. The transition of the scattering 

amplitude into the saturation region is similar to the formation of the front of the travelling 

wave of the FKPP equation [17]. We obtain the solution of the BK equation which also 

suggests the travelling wave nature of the solution. The solution of the BK equation obtained 

in this work can be helpful for further phenomenological studies in light of present and future 

accelerator facilities. 

    We organize the paper as follows. In section 2, we discuss the relation between the BK and 

the FKPP equations. The solution of the BK equation is presented in section 3. The summary 

and conclusion are presented in section 4.   

 

2 Relation between the BK and FKPP equations 

 

The relation between the BK and FKPP equations has been found in the pioneering work 

done by S. Munier and R. B. Peschanski [17-19]. In this section, we discuss how to relate the 

BK equation with the FKPP equation following their work. 

    BK equation is about energy dependence of scattering amplitude at small-x, it is often 

convenient to carry out work in the pQCD dipole picture of deep inelastic scattering (DIS) 

[28-31].  This picture is known as the dipole model, which is valid at small-x. The main 

advantage of the dipole picture of DIS is the factorization of the scattering process into 

several steps, resulting in smooth use of pQCD. In the dipole picture, an incoming virtual 

photon after fluctuation changes to a quark-antiquark dipole. The quark-antiquark pair then 

scattered off the target proton and recombines to form some final state particles. In reference 

to the dipole picture of DIS, in the leading logarithm approximation of pQCD, the cross-

section in terms of the total rapidity (Y) and the virtuality of the photon (Q) factorizes to [27] 
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where   being the longitudinal momentum fraction of the quark of the virtual photon,  

 (      ) is the photon wave function on a quark-antiquark dipole of its size    .  (     ) 
is the forward dipole-proton scattering amplitude. 

    Within the large    approximation at fixed coupling and for a homogeneous nuclear target, 

the measured scattering amplitude  (   ) at transverse momentum   and total rapidity   

obeys the BK equation in momentum space given by [15] 
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 and  ( )    ( )   ( )   (   ) is the BFKL kernel.      , where 
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 ),    being some low momentum scale at fixed. The expansion of the BFKL kernel 

around   
 

 
 has been suggested in ref. [17], and with this expansion equation (2) reduces to 

the nonlinear partial differential equation given by 
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In reference to the above expansion and defining   ̅    
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the equation (3) turns into the FKPP equation for  (   ), can be expressed as [17]  

 

    (   )     
  (   )   (   )    (   )       (5) 

 

Thus, with some change of variable transformation, it is seen that the BK equation (3) can be 

transformed to the above equation (5), which is the famous FKPP equation. 
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3 Solution of the BK equation with HPM  

 

Given the discussion of the relation between the FKPP and the BK equations discussed in the 

previous section, let us solve the BK equation for the scattering amplitude  (   ). The 

solution of the BK equation (3) in connection with the equation (5) for the scattering 

amplitude  (   ) using the HPM can be written as 

 

 

 
 (   )  

   
 

         
    

     (6) 

 

where    is the initial condition. Once the initial condition is known to us, the solution of the 

BK equation gives the scattering amplitude  (   ) at any given rapidity    . In this work, 

we will use the following initial condition given by K. Golec-Biernat and M. Wusthoff 

(GBW), introduced first in ref. [32] 
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  is the fit parameter, called the initial saturation scale squared. This initial condition can 

simply be Fourier transformed into momentum space analytically and applied to the BK 

equation in momentum space. The momentum space result of the GBW initial condition can 

be written as 
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  (        
 ) is the incomplete gamma function. At large values of        

   this behaves as 
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Substitution of the above equation in equation (6) for the initial condition   , we obtain the 

scattering amplitude  (   ) with GBW as the initial condition 

 

 
 (   )  

         
 

          
 

          
     

    

   (10) 

 

This is the approximate analytical solution of the BK equation (3). The evolution of the 

scattering amplitude at different rapidities can be seen in Fig. 1 
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Figure 1. The solution of the BK equation in momentum space,  ( ), at 
various rapidities Y = 2, Y = 5, Y = 9, Y = 15, Y = 21 and Y = 27. 

 

4 Summary and conclusion 

 

This work has suggested an approximate analytical solution of the BK equation using the 

HPM. The relation between the geometric scaling phenomena of the solution of the BK 

equation and the travelling wave solution of the FKPP equation, as suggested by S. Munier 

and R. Peschanski in their pioneering work, has guided the scientific community working in 

the field of gluon saturation. In this work, we have started our discussion with the relation 

between the BK and FKPP equations. We carried out work in the pQCD dipole picture of 

DIS in which the measured scattering amplitude  (   ) obeys the BK equation in the 
momentum space frame to work in the context of at least travelling wave solution and the 
geometric scaling. Afterward, with some change of variables and a slight approximation in 
the BK equation, we ended with the approximated analytical solution of the BK equation in 
the momentum space. We plotted the obtained solution, equation (10), at different 
rapidities in Fig. 1 to check the travelling wave nature of the solution. Indeed, one can see 
the solution’s travelling wave nature. It indicates that at high energies, the scattering 
amplitude behaves as a wave travelling from the region     to     as   increases 
without being changed in the profile. It is indeed a vital physical result of this travelling wave 
approach. 
    The solution obtained in this work can be helpful in further phenomenological studies in 
high-density QCD and saturation regions. However, it is going to be interesting to observe 
whether this type of travelling wave solution and geometric scaling exist or not at very high 
energies when EIC (Electron-Ion-Collider) [33] and other future projects run operations. 
Nevertheless, the BK equation with truncation of the BFKL kernel successfully explains the 
observed geometric scaling and the travelling wave nature of its solution at current 
accelerator facilities. We must rely on the future acceleration facilities for precise 
measurements of observed phenomena and their confirmation. 
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