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Abstract

In this paper, we study the collision of spinning particles near a charged rotating BTZ
black hole with WGC condition, and we obtain the extracted energy of the black hole by
the Penrose process. We assume two particles fall from infinity and collide near a black
hole. During this collision, one particle falls into the black hole, and the other escapes to
infinity. We examine and calculate the maximum efficiency parameter (η). We mention
that by exerting the weak gravity conjecture, we have ηmax ≃ 1250. On the other hand,
the particles created in the collision have a specific range of spin, which can lead to the
formation of unknown particles. This result can enhance our understanding of how black
holes work, how they die, and better study physical, astronomical black holes. A thorough
understanding of black holes helps us understand how a holographic system works.
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1 Introduction
Several researchers have studied particle collisions in both spinning and non-spinning particles
near the background of black holes, and it has a long history. The black hole is the most
strong system globally, and the energy extracted from the black hole is much more efficient
than nuclear energy. Of course, this can be extracted from certain black holes. Penrose sug-
gested rotating black holes for energy extraction. The possibility of a particles collision near a
black hole was first investigated by Piran and others in 1975 [1]. Also, in the continuation of
this path, a beautiful event took place and discovered a new particle collision mechanism by
Banãdos, Silk and West (BSW), in 2009 [2]. As a result, due to the increased energy of the
particles in collision, rotating black holes are considered an accelerator [2, 3]. In recent years,
different black holes have studied various aspects of the BSW mechanism. Many results have
been investigated, such as Kerr naked singularity and rotating black holes and their universal
properties. We see Refe.s [4–7]. Also, much research has been done on the various dimensions of
space-time (higher or lower), such as the five-dimensional Kerr black hole and three-dimensional
charged black holes [8–10]. The Penrose process has a wide range of applications. For example,
the BSW mechanism investigates the Penrose collision, leading to the extraction of energy from
the black hole through particle collisions, which can help us in the relevant optimizations of
the Penrose process. We assume the particles that fall into the ergo region of the black hole
are broken into two particles. The broken particle with negative energy sinks into the black
hole, and another with positive energy escapes to infinity. The resulting energy extraction from
rotating black holes is called the Penrose process. This method is expected to provide a more
efficient mechanism in astrophysical conditions. At high energies, unknown particles can form,
which indicates new physics. So this motivates us to study rotating black holes because even
when the energy is arbitrarily large, the particle can not escape to infinity, and it will be crucial
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to examine the maximum efficiency of extracted energy from black holes [11–19].
In this article, we peruse BTZ black Holes. A specific stationary black hole solution was
first investigated for three-dimensional space-time with a negative cosmological constant by
Banãdos-Teitelboim-Zanelli (BTZ) [20]. Due to the simplicity and similarity of this solution
with the (3+1)-dimension Kerr black hole, it has received much attention in recent years.
Also, the collision of non-spinning particles is studied around the (2+1)-dimensions black holes
by [21–24]. This beautiful model helps to gain a deep understanding of the BTZ background.
Many problems are simpler and more analytical in the BTZ space-time than in Kerr [22–24].
In the study of particle collision, many authors usually focus on particle geodetic path, so
the motion equations of spinning particles around a space-time background are described by
Mathisson-Papapetrou-Dixon(MPD) equations [26–28]. Here, we take advantage of the colli-
sions associated with the Kerr space [25] and investigate the particle collision on the CR BTZ
black hole.
Also, the weak gravity conjecture (WGC) plays a significant role in this paper. Most recently,
WGC has been studied in various fields, including aspects of this conjecture, such as swamp-
land and landscape. In those cases, we can say the theories set inconsistent and consistent
with quantum gravity are swampland and landscape, respectively. The WGC also contains
another conjecture, such as Trans-Planckian-Censorship-Conjecture (TCC). Generally, for dif-
ferent applications of WGC, one can see Refe.s [29–60]. As we know, black holes have extremal
conditions (Q = M) in the WGC. This condition is slightly different in rotating black holes
covered in the third section. In general, weak gravity conjecture can have new practical as-
pects. This article wants to examine the energy obtained from the collision of two spinning
mass particles from the BSW method at WGC conditions.
The above discussions motivate us to organize the corresponding paper as a following. In sec-
tion 2, thoroughly examines the collision of spinning particles near the charged rotating BTZ
black hole (CR BTZ) to BSW methods. In section 3, we explain the WGC condition for charged
and rotating black holes. In section 4, We study two essential constraints that orbits create on
particles. In section 5, we examine the process performed in section 2 with the weak gravity
conjecture method. Moreover, in the final section, we examine the results obtained from these
two methods.

2 The motion equations of spinning particles
One of the extraordinary phenomena to investigate extracted energy is colliding two spinning
mass particles near a charged rotating black hole. For this reason, first, we consider the metric
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of CR BTZ black hole, which is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dϕ+

j

2r2
dt)2,

f(r) = −M +
r2

l2
+

j2

4r2
− πQ2 log(r)

2

(1)

Here M , Q and j are mass, charge and angular momentum of black hole respectively and
l2 = (− 3

Λ
), 8G = c = 1. According to the space-time background, the equations of motion can

be calculated with MPD equations [54, 55].

DP a

Dτ
= −1

2
Ra

bcdv
bScd,

DSab

Dτ
= P avb − P bva.

(2)

Here va = ( ∂
∂r
)a, D

Dτ
, P a and Sab are tangent vector, covariant derivative, 4-momentum and

the spin tensor, respectively. To get logical relations between P a and va, we use the following
conditions [54],

SabPb = 0,

P ava = −m.
(3)

By combining the Eqs. (2) and (3) one can obtain the following equation,

mva − P a =
SabRbcdeP

cSde

2(m2 + 1
4
RbcdeSbcSde)

. (4)

Generally, we know that 4-momentum is not parallel to 4-speed of spin particles in 4−dimensions.
Of course, our space-time will be (2+1)−dimensions. For two killing vectors in CR BTZ space-
time ζa = ( ∂

∂t
)a and ϕa = ( ∂

∂ϕ
)a, we have the following equations,

e(0)a =
√
f(r)(dt)a,

e(1)a =
(dr)a√
f(r)

,

e(2)a = r(dϕ)a −
j

2r
(dt)a.

(5)

So, the corresponding conserved quantity concerning ζa will be as,

Qζ = P aζa −
1

2
Sab∇bζa. (6)
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By using the above equation, we can calculate the two conserved equations, which are energy
per unit mass Em and angular momentum per unit mass Jm and are given by,

Em = −uaζa +
1

2m
Sab∇bζa,

Jm = uaϕa −
1

2m
Sab∇bϕa.

(7)

Using equations (5) and (6) for the CR BTZ metric (1), we can obtain

Em =
√

f(r)u0 + (
j

2r
− πsQ2

4r
+

sr

l2
)u2,

Jm = s
√

f(r)u0 + (−2r3

j
− j2s

4r3
− πsQ2

4r
+

rs

l2
− 2r3s

j − 2r2
)u2.

(8)

The above equations help us to obtain the dynamic velocity u as,

u0 =
Em(−4r − 2js

r
) + Jm(

2j
r
− πsQ2

r
+ 4rs

l2
)

(−4r − πs2Q2

r
+ 4rs2

l2
)
√
f(r)

,

u2 =
Jm − Ems

r + (πQ
2

4r
− r

l2
)s2

,

(9)

In order to obtain u1, we use (u0)
2 − (u1)

2 − (u2)
2 = m2 condition. So, the corresponding u1

will be as,

u1 = ρ

√√√√−m2 − 16(Jm − Ems)2

(−4r − πs2Q2

r
+ 4s2r

l2
)2

+
(Em(−4r − 2js

r
) + Jm(

2j
r
− πsQ2

r
+ 4rs

l2
))2

(−4r − πs2Q2

r
+ 4rs2

l2
)2f(r)

. (10)

By using the above equations with appropriate replacements, one can obtain v0, v1 and v2 as,

v0 = (−4r − πs2Q2

r
+

4rs2

l2
)u0,

v1 = (−4r − πs2Q2

r
+

4rs2

l2
)u1,

v2 = (−4r +
πs2Q2

r
+

4rs2

l2
)u2.

(11)
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The motion equation of spinning particles in the CR BTZ space-time can be calculated accord-
ing to the above equations.

P0 =m(
Em(−4r − 2js

r
) + Jm(

2j
r
− πsQ2

r
+ 4rs

l2
)√

f(r)
),

P1 =mρ[−(4r +
πs2Q2

r
− 4rs2

l2
)2m2 − 16(Jm − Ems)

2

+
1

f(r)
(Em(−4r − 2js

r
) + Jm(

2j

r
− πsQ2

r
+

4rs

l2
))2]

1
2 ,

P2 =4m(−4r +
πs2Q2

r
+

4rs2

l2
)(

Jm − Ems

4r + πs2Q2

r
− 4rs2

l2

).

(12)

Where P0 = P t(r), P1 = P r(r), P2 = P ϕ(r) and ρ = ±. We note that the sign + and − indicate
the particle direction is outward and inward, respectively.

3 The WGC condition
Generally, one can say that the extreme black holes must be unstable in any corrected theory
as a quantum gravity (except in cases we have symmetry). Therefore, there must be states in
the following form,

(M,Q) → (M ′, Q− q) + (m, q), M > M ′,m. (13)

As we know, the extreme condition M = Q causes us to consider a state like q
m

≥ 1. On the
other hand, we know that the decay equations for the charged black hole with multiple U(1)
are given by,

Qa =
∑
i

nimiξ
i
a, M >

∑
i

nimi, (14)

also, we have the following equation,

ξi = (ξai ), ξai =
qai
mi

. (15)

One can rewrite of equations as,

Za =
∑
i

σiξ
a
i , 1 > σi, (16)

where Za =
Qa

M
and σi =

nimi

M
. Similarly, in the case of convex shells with multiple charges, the

decay equations for a charged rotating black hole is given by,

J =
∑
i

nimiξ
i
J , Q =

∑
i

nimiξ
i
Q, M > nimi (17)
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and,
ξi = (ξJi , ξ

Q
i ), ξJi =

Ji
mi

, ξQi =
qi
mi

. (18)

One can rewrite the equations,

ZJ =
∑
i

σiξ
J
i , ZQ =

∑
i

σiξ
Q
i , 1 >

∑
i

σi (19)

here are ZJ = J/M , ZQ = Q/M , and σi = nimi/M . The essential point here is that we will
have a completely different extreme condition for charged rotating black holes, so in this case,
we have,

M2 = Q2 +
J2

M2
. (20)

It can generally consider more configurations such as rotations, charge, Etc. In the appropriate
dimensions, we have another condition for a charged rotating black hole,

Z2
J

M2
+ Z2

Q = 1. (21)

We continue our calculations by placing condition WGC in the motion equations of the previous
section.

4 Some constraints on the orbits
We consider two particles to check constraints on the orbits; they collide in r with r ≥ rH
condition, where rH is the event horizon radius of a black hole. Particles with a certain angular
momentum and energy reach the point of collision in the ergo region of a black hole. We
represent the particular value with the impact parameter b = J

E
. This point is located for

critical particles bc on the event horizon rH . In order to get such a point, the collision point
must be before the horizon. Therefore, our first constraint is obtained with P1 ≥ 0 and WGC
condition,

b =
Jm
Em

≥ 4r2 + 2js

2j − πQ2s+ 4s( r
l
)2
, (22)

We can obtain bc = 2
j

by the f(rh) = f ′(rh) = 0 conditions. bc is the critical value, and
particles can not reach the horizon under conditions, b > bc. Also, non-critical particles have
b = 2

j
(1 + γ). Spinning particles must meet the time-like condition to avoid superluminal

motions and causality problems. As a result, the second condition is vµvµ < 0. Using the
equations (9), (10), (11) and (9) we obtain,

E >
(j2s2 − 4)2

16s(js− 2)
. (23)
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Moreover, we can specify the range of spins as smin < s < smax by placing E = 1. In other
words, the time-like condition limits the energy and spin of particles. The values obtained are
equal to s = (−2.17,−0.31, 1, 1.48). In fig 1, we plot the energy in terms of spin by equation
(22). As you see energy E has only an increasing trend in the range of −1 < s < 0.

s

E

Figure 1: The allowable area indicates the particles’ energy E and spins s to reach the event
horizon. Particles with the highest energy have a spin of −0.6 < s < 0.

5 The Collision of two massive particles
Now we will investigate the collision of two spinning particles near a charged rotating black
hole. The two collide before reaching the horizon. One of the particles falls into the black hole
and the other escapes to infinity. We expect to have maximum energy efficiency in this case
[19]. Particles have the following angular momentum: The first critical particle has J1 = 2E1

j
,

the second non-critical particle has J2 = 2E2

j
(1 + γ), and The third near-critical particle has

J3 = 2E3

j
(1 + αϵ + βϵ2 + ..). The last particle has an angular momentum based on the other

three particles. We use the laws of energy E1 + E2 = E3 + E4 conservation and angular
momentum J1 + J2 = J3 + J4, and obtain the fourth particle’s angular momentum J4 =
2
j
(E1 + E2(1 + γ)− E3(1 + αϵ+ βϵ2)). Also, the spins conditions and direction are equal,

s2 = s4, s1 = s3, ρ2 = ρ4 (24)

These conditions have a good effect on the super-Penrose process. We assume the mass of
particles to be equal m1 = m2 = m3 = m4. Given all these conditions, we calculate the value
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of P1 for each particle, and by placing it in equation P
(1)
1 +P

(1)
2 = P

(1)
3 +P

(1)
4 , we can calculate

the energy of third particle E3 based on the first two particles.

E3 =
2e2(ϖγ(1 + s2)

2 − 1−ϖ + s2)

2ϖ2(2 + 2s1 + s21 + 2s2 + s22)
×

(±2)
√

e22(1 +ϖ − s2 −ϖγ(1 + s2)2)2 −Xϖ2(2 + 2s1 + s21 + 2s2 + 2s2).

X =(γ2E2
2(1 + s2)

2 − E2
2(2 + γ − 2s2)− (2E1E2(s2 − 1)− E2

2(2 + γ − 2s2) + γ2E2
2(1 + s2)

2))+

32ρ1ρ2(−2E2
2(s1 − 1)2(E2

1 + (1 + s1)
2)(s2 − 1) + γE2

2(s1 − 1)2(E2
1 + (1 + s1)

2)− γ2E2
2

(s1 − 1)2(E2
1 + (1 + s1)

2)(1 + s2)
2)

1
2 .

(25)

We have ϖ = (αϵ + βϵ2 + ...) and the following equation obtains the corresponding energy
efficiency,

η =
E3

E2 + E1

. (26)

The maximum energy efficiency: We calculated the energy of third particle E3 in terms
of E1, E2 energy, s spin and some suitable parameters. Two particles are coming from infinity,
so we consider E1 ≥ 1 and E2 ≥ 1. In order to have the best efficiency, we assume that for the
first particle, ρ1 = +1, E1 ≃ 1 and the second particle, ρ2(= ρ4) = −1, E2 ≃ 1. So, one can
obtain The third particle energy as,

E3 =
−32(s1 − 1)

√
−(2 + s1(2 + s1))

2ϖ(s2 + 1)
. (27)

Now we need to calculate a γ variable for the second particle. We consider it non-critical. So
we have b = 2

j
(1 + γ) and E2 ≃ 1. By replacing the above-obtained result with the time-like

conditions (23), one can obtain γ = ( s2+1
s2

)l2. In order to acquire E3 as a straightforward form,
we first take s2 from equation γ and put it into (27). According to Figure 1, we know that
energy has an increasing trend in the range of −1 < s < 0. So, we have s3 = s1 = −0.3 and
ϖ = (αϵ+ βϵ2). We can plot energy E3 in terms of s2 and ϖ, fig (2a).

Fig (2a) shows the highest energy in the lower ϖ. i.e., the third particle has the most
energy E3, while the second particle s2 is in a near-critical state. Moreover, we see that when
we have the maximum energy, the spin s2 takes on two values, 0.6 ≤ s2 ≤ 0 and is equal to
0.02 ≤ ϖ ≤ 0.1. In the last step, we plot the third particle energy E3 according to the primary
particles spin s2 and s1 (Fig (2b)). The third particle has the most energy when the primary
particles have spin ranges of −0.6 ≤ s1 ≤ 0 and −0.78 ≤ s2 ≤ −0.5. These amounts of energy
are for when the primary particles have an energy of (E/m)1 ≃ (E/m)2 ≃ 1, which means
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Figure 2: In (a), we plot the E3 in terms of ϖ and s2 whith ρ3 = −1 and s1 = s3 = 0. In (b),
the E3 in terms of s1 and s2, by increasing of s1, the corresponding energy is increasing.

that black holes can extract much energy in the final moments and extremality. So the values
obtained above lead us to have the following equation,

η =
(E/m)3

(E/m)1 + (E/m)2
≃ 2500

2
≃ 1250. (28)

6 Conclusions
This paper studied the Penrose process for the spinning particles near charged rotating BTZ
black holes. Two particles come from infinity and collide near a black hole in this method. One
particle falls into a black hole with respect to energy and angular momentum, and the other
escapes to infinity. We also calculated the maximum efficiency parameter for the third particle
and showed that this value equals η ≃ 1250. These calculations can help us track physical
astrology black holes. It will also enhance our understanding of black holes, how they work,
and how they die. Black holes can act as a holographic system, and how they function and die
can lead to exciting studies in their holographic structures, such as their thermodynamics and
hydrodynamics. We will follow these reviews in future work.
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