
The 1st International Conference of Holography and its Applications 

9 to 10 March., 2022, Damghan University, Damghan, Iran. 

ICHA1-XXXXX 

1 
 

 

 

Quantum Corrections to the Shadow of Schwarzschild Black Hole Surrounded by 

Holographic Quintessence 

 
Sara Saghafi1, Kourosh Nozari2 
1Department of Theoretical Physics, University of Mazandaran, Babolsar. 

Email: s.saghafi@umz.ac.ir 
2Department of Theoretical Physics, University of Mazandaran, Babolsar. 

Email: knozari@umz.ac.ir 

 

 

Abstract. We study the shadow behavior of a quantum-corrected, regular Schwarzschild 

black hole surrounded by the holographic quintessence. We investigate how the shadow 

of a black hole is influenced by quantum effects together with holographic quintessence. 

We use the Hamilton-Jacobi approach and also, the Carter method to formulate the 

geodesic equations of the black hole. We find that the shadow size of a black hole is 

indeed determined by background quantum effects and dark energy ingredient of the 

Universe, in addition to the mass of a non-rotating black hole. 
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1 Introduction 

 

Recently, a vast number of astrophysical data, such as observations of type Ia supernovae [1] 

and so on, show us that currently, the Universe is experiencing an accelerated phase in its 

expansion, which is widely believed that it is due to some kind of negative-pressure form of 

energy, known as dark energy. The simplest candidate for dark energy within the structure of 

General Theory of Relativity (GR) proposed by Einstein is the cosmological constant [2], 

which is related to the vacuum energy with a constant energy density and pressure, and a 

parameter of equation of state 𝜔Λ = −1. An alternative proposal for dark energy is the 

dynamical scenario to describe the nature of dark energy. This dynamical proposal is 

characterized by some scalar field mechanism, which suggests that the negative-pressure form 

of energy is provided by a scalar field. One of the most simple, famous models of dynamical 

dark energy is the quintessence scalar field [3] with the parameter of equation of state 𝜔𝑞 >

−1 for the spatially homogeneous case. Due to the assumption of its homogeneity, the field is 

considered to be extremely light. 

Another alternative to describe the nature of the dark energy, is arisen from a quantum 

gravity outcome, known as the holographic principle [4], firstly proposed by ’t Hooft [5] in the 

black hole physics. According to the holographic principle, the entropy of a system scales with 

its surface area, not its volume. Based on quantum field theory [6], a short-distance cut-off is 

related to a long-distance (IR) cut-off, because of the black hole formation limit. If the quantum 

vacuum energy is due to a short-distance cut-off, then the total energy in a region of size 𝐿 has 

not to exceed a black hole mass of the same size, i.e., (𝐿3𝜌ℎ ≤ 𝐿𝑀𝑝
2). Therefore, by taking the 

whole universe into account, the vacuum energy associated with the holographic principle can 

be considered as dark energy, so-called holographic dark energy [7,8]. The holographic dark 

energy density for the largest 𝐿 is 𝜌ℎ = 3𝜆2𝑀𝑝
2𝐿−2 in which 𝜆2 is a constant, 𝑀𝑝

−2 = 8𝜋𝐺 is 

the Planck mass, and 𝐺 is the Newtonian gravitational constant. It is shown that for 𝜆 ≥ 1, the 
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holographic dark energy can be explained by quintessence field, known as holographic 

quintessence, with a parameter of equation of state in range −1 < 𝜔ℎ𝑞 < −1/3 [7,8]. 

Recently, Kiselev [9] considered the quintessence field in the background of Schwarzschild 

black hole using quintessence stress–energy tensor with the additivity and linearity conditions 

to derive a Schwarzschild-like solution of GR surrounded by quintessence dark energy. So, in 

the range −1 < 𝜔ℎ𝑞 < −1/3, one can take the Kiselev's solution into account as a black hole 

solution in the background of holographic quintessence. On the other hand, by considering the 

quantum effects at the Planck scale, Kazakov and Solodukhin [10] in 1994 modified 

Schwarzschild black hole, so that they removed its point-like singularity. The Kazakov-

Solodukhin's black hole has a central 2-sphere of radius 𝑎 rather a central point-like singularity 

due to the presence of quantum effects, and 𝑎 is the quantum parameter of the setup, which is 

of the order of Planck's length 𝑙𝑝. It is possible to combine the Kiselev and Kazakov-

Solodukhin solutions [11] to gain a regular Schwarzschild back hole in the background of the 

holographic quintessence with 𝜔ℎ𝑞 = −2/3 as a special case in the range −1 < 𝜔ℎ𝑞 < −1/3. 

We named black hole as the Kazakov-Solodukhin-Kiselev (KSK) black hole. 

In this paper, we aim to study the shadow behavior of the KSK black hole to find how 

quantum effects of the spacetime and also, the holographic dark energy affects the shadow of 

black holes. We know that if a black hole is in front of a luminous background, it will produce 

a shadow, which is a ring of light around a region of darkness. Such a ring of light is created 

by matter circling at the very edge of the event horizon. For a non-rotating black hole, the shape 

of the shadow, which is circular, together with its size are determined by the black hole's mass.  

The rest of the paper is organized as follows. In Section 2 we introduce the line element of the 

KSK black hole, briefly. In Section 3 we study the motion of photons in the KSK spacetime, 

and then we investigate the shadow behavior for this. In Section 4 we have a discussion and 

review our results. Finally, in Section 5 we end with a brief conclusion. In the whole of this 

paper, we set 𝐺 = 𝑐 = ℏ = 1. 

 

2 Quantum-Corrected Schwarzschild Black Hole in the Background of Holographic 

Quintessence 

 

Combining the Kiselev [9] and Kazakov-Solodukhin [10] ideas as the procedure performed in 

Ref. [11], one can find the following line element 

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑓(𝑟)
+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2) ,                                                                     (1) 

where 

𝑓(𝑟) = −
2𝑀

𝑟
+

1

𝑟
√𝑟2 − 𝑎2 −

𝜎

𝑟3𝜔ℎ𝑞+1  ,                                                                                         (2) 

in which 𝑀 is source mass and 𝜎 is a positive normalization constant corresponding with the 

holographic quintessence. Due to the presence of quantum effects, the line element (1) depicts 

a regular Schwarzschild black hole surrounded by holographic quintessence for which a central 

2-sphere of radius 𝑎 substitutes for the central point-like singularity of the Schwarzschild black 

hole. Also, the regular black hole experiences the late time accelerated expansion of the 

Universe because of the presence of holographic quintessence in the background as a candidate 

of dark energy. Now, we just need to put 𝜔ℎ𝑞 = −2/3 in Eq. (2) to obtain the metric coefficient 

of the KSK black hole as follows 

𝑓(𝑟) = −
2𝑀

𝑟
+

1

𝑟
√𝑟2 − 𝑎2 − 𝜎𝑟 .                                                                                                    (3) 
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Considering the metric coefficient (3), in the following, we want to study the shadow behavior 

of the KSK black hole. 

 

3 Shadow Behavior of the KSK black hole 

 

The Lagrangian of a test particle with mass 𝑚 in the spacetime background of the KSK black 

hole is as follows 

ℒ =
1

2
𝑔𝜇𝜈𝑥̇𝜇𝑥̇𝜈 =

1

2
[−𝑓(𝑟)𝑡̇2 +

1

𝑓(𝑟)
𝑟̇2 + 𝑟2𝜃̇2 + 𝑟2 sin2 𝜃 𝜙̇2] ,                                          (4) 

in which "dot" denotes derivation with respect to an affine parameter, 𝜏 and 𝑔𝜇𝜈 is the metric 

tensor of KSK black hole. The canonically conjugate momentum's components can be found 

out as 

𝑃𝑡 = 𝑓(𝑟)𝑡̇ = 𝐸 , 𝑃𝑟 =
1

𝑓(𝑟)
𝑟̇ , 𝑃𝜃 = 𝑟2𝜃̇ , 𝑃𝜙 = 𝑟2 sin2 𝜃 𝜙̇ = 𝐿 ,                     (5) 

in which 𝐸 and 𝐿 as the energy and the angular momentum of the test particle, respectively are 

two constants of the motion arising from two Killing vectors, 𝜕𝑡 and 𝜕𝜙 of the KSK black hole. 

To investigate the motion and orbits of photon, we make use of the Hamilton-Jacobi 

approach and also, we consider the Carter method [12] to formulate the geodesic equations for 

the KSK black hole. The Hamilton-Jacobi equation is to the form 
𝜕𝑆

𝜕𝜏
= −

1

2
𝑔𝜇𝜈

𝜕𝑆

𝜕𝑥𝜇

𝜕𝑆

𝜕𝑥𝜈
 ,                                                                                                                       (6) 

where 𝑆 is the Jacobi action. We Assume a separable solution for Jacobi action as 

𝑆 =
1

2
𝑚2𝜏 − 𝐸𝑡 + 𝐿𝜙 + 𝑆𝑟(𝑟) + 𝑆𝜃(𝜃) .                                                                                         (7) 

For photon, we have 𝑚 = 0. Inserting Eq. (7) into the Hamilton-Jacobi equation (6) results in 

0 =
𝐸2

𝑓(𝑟)
− 𝑓(𝑟) (

𝜕𝑆𝑟

𝜕𝑟
)

2

−
1

𝑟2
(

𝐿2

sin2 𝜃
+ 𝒦 − 𝐿2 cot2 𝜃) −

1

𝑟2
((

𝜕𝑆𝜃

𝜕𝜃
)

2

− 𝒦 + 𝐿2 cot2 𝜃) ,  

                                                                                                                                                                    (8) 

in which 𝒦 = (𝑟2𝜃̇)
2

+
𝐿2

sin2 𝜃
 is the Carter constant. Therefore, one can recast Eq. (8) as the 

following two separated equations 

𝑟4𝑓2(𝑟) (
𝜕𝑆𝑟

𝜕𝑟
)

2

= 𝑟4𝐸2 − 𝑟2𝑓(𝑟)(𝒦 + 𝐿2) ,                                                                               (9) 

(
𝜕𝑆𝜃

𝜕𝜃
)

2

= 𝒦 − 𝐿2 cot2 𝜃  .                                                                                                                 (10) 

From Eqs. (5), (9), and (10), one can find the complete null geodesic equations for the KSK 

black hole as follow 

𝑡̇ =
𝐸

𝑓(𝑟)
 , 𝜙̇ =

𝐿

sin2 𝜃
 ,                                                                                                              (11) 

𝑟2𝑟̇ = ±√ℛ = ±√[𝑟4𝐸2 − 𝑟2𝑓(𝑟)(𝒦 + 𝐿2)]                                                                              (12) 

𝑟2𝜃̇ = ±√Θ = ±√[𝒦 − 𝐿2 cot2 𝜃]                                                                                                 (13) 

where plus (minus) is for outgoing (ingoing) radial direction of photon's motion. 

One can define two impact parameters 𝜉 = 𝐿/𝐸 and 𝜂 = 𝒦/𝐸2 to analyze the properties of 

photon's motion around the KSK black hole. On the other hand, it is well known that the 
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boundaries of the shadow of a black hole is determined by the unstable null circular orbits. To 

find this, one can rewrite the radial null geodesic equation for the KSK black hole as 

(
𝑑𝑟

𝑑𝜏
)

2

+ 𝑉𝑒𝑓𝑓(𝑟) = 0 , 𝑉𝑒𝑓𝑓(𝑟) =
1

𝑟2
𝑓(𝑟)(𝒦 + 𝐿2) − 𝐸2 ,                                               (14) 

in which 𝑉𝑒𝑓𝑓(𝑟) is the effective potential for radial photon's motion. The unstable null circular 

orbits are available when the effective potential becomes maximum, which occurs in the 

following conditions 

𝑉𝑒𝑓𝑓 =
𝑑𝑉𝑒𝑓𝑓

𝑑𝑟
|

𝑟=𝑟𝑜

= 0 , ℛ =
𝑑ℛ

𝑑𝑟
|

𝑟=𝑟𝑜

= 0 ,                                                                         (15) 

where 𝑟𝑜 known as photon sphere radius is the certain value of 𝑟 for which 𝑉𝑒𝑓𝑓 becomes 

maximum. From conditions introduced in Eq. (15), one can find that 𝑟𝑜 is the solution of the 

following equation 

𝑟𝑜𝑓′(𝑟𝑜) − 2𝑓(𝑟𝑜) = 0 .                                                                                                                      (16) 

One can recast the effective potential, 𝑉𝑒𝑓𝑓(𝑟) and the function ℛ(𝑟) in terms of two impact 

parameters, 𝜂 and 𝜉 as follow 

𝑉𝑒𝑓𝑓(𝑟) = 𝐸2 [
1

𝑟2
𝑓(𝑟)(𝜂 + 𝜉2) − 1] , ℛ(𝑟) = 𝐸2[𝑟4 − 𝑟2𝑓(𝑟)(𝜂 + 𝜉2)] .                  (17) 

Therefore, inserting Eq. (17) into Eq. (15), one can find 

𝜂 + 𝜉2 =
4𝑟𝑜

2

2𝑓(𝑟𝑜) + 𝑟𝑜𝑓′(𝑟𝑜)
 .                                                                                                            (18) 

We compute the values 𝜂 + 𝜉2 and 𝑟𝑜 for some different values of 𝜎, 𝜔ℎ𝑞, and 𝑎 in Table 1 to 

investigate the variation of 𝜂 + 𝜉2 in terms of 𝑟𝑜. In Table 1, the case of 𝑎 = 0 = 𝜎 is for 

Schwarzschild black hole, just for comparison. We should note that in the considered unit 

setup, i.e., 𝐺 = 𝑐 = ℏ = 1, the photon sphere radius, 𝑟𝑜 has the dimension of length, while the 

quantity 𝜂 + 𝜉2 has the dimension of length square. From Table 1, one can see that increasing 

𝜎 leads to increase 𝑟𝑜 and the quantity 𝜂 + 𝜉2 for a fixed 𝑎. Also, for a fixed 𝜎, increasing 𝑎, 

results in increasing 𝑟𝑜 and the quantity 𝜂 + 𝜉2. 

 

Table 1. Values of 𝑟𝑜 and 𝜂 + 𝜉2 for different values of 𝜎, 𝜔ℎ𝑞, and 𝑎. 

 
𝜎 = 0 𝜎 = 0.05 𝜎 = 0.1 

𝑟𝑜 𝜂 + 𝜉2 𝑟𝑜 𝜂 + 𝜉2 𝑟𝑜 𝜂 + 𝜉2 

𝑎 = 0 3 9 3.266 14.552 3.675 41.609 

𝑎 = 1 3.312 9.473 3.611 15.941 4.084 57.110 

𝑎 = 2 3.592 9.906 4.472 19.999 5.152 282.78 

 

To characterize the real shadow seen on the observer's frame (sky), one should use the 

celestial coordinates, 𝛼 and 𝛽 [13]. These coordinates make it easier to study the shape of the 

black hole shadow. The celestial coordinates can be defined as follow 

𝛼 = lim
𝑟𝑜→∞

(−𝑟𝑜
2 sin 𝜃𝑜

𝑑𝜙

𝑑𝑟
) , 𝛽 = lim

𝑟𝑜→∞
(𝑟𝑜

2
𝑑𝜃

𝑑𝑟
) ,                                                                 (19) 

where 𝜃𝑜 is the inclination angle between the black hole's 𝑧-axis and the sight line from source 

to observer. To be precise, the celestial coordinates are two apparent perpendicular distances 
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of the shadow as seen from the axis of symmetry, and its projection on the equatorial plane, 

respectively. Utilizing the deduced null geodesic equations, one can assume the observer on 

the equatorial plane (𝜃 = 𝜋/2) to read the celestial coordinates as 

𝛼 = −𝜉 , 𝛽 = ±√𝜂 .                                                                                                                    (20) 

Using Eq. (20), one can read Eq. (18) as  

𝛼2 + 𝛽2 = 𝜂 + 𝜉2 =
4𝑟𝑜

2

2𝑓(𝑟𝑜) + 𝑟𝑜𝑓′(𝑟𝑜)
= 𝑅𝑠

2 ,                                                                            (21) 

in which 𝑅𝑠 is the perfect circle's radius of the shadow since the KSK black hole is a non-

rotating one. This radius approximately characterizes the shadow size. Fig. 1 shows the 

illustration of the shadow of the KSK black hole in the celestial plane (𝛼, 𝛽) for some different 

values of 𝑎 and 𝜎. The dashed red and dashed orange circles are respectively for 𝜎 = 0.05 and 

𝜎 = 0.1 with 𝑎 = 1. Also, blue dot-dashed and purple dot-dashed circles are respectively for 

𝜎 = 0.05 and 𝜎 = 0.1 with 𝑎 = 2. From Fig. 1 we again see that for larger values of 𝑎, the 

radius of the shadow increases. This is because of strengthening the quantum effects, which 

grows the central 2-sphere, results in increasing the size of the black hole and its shadow. On 

the other hand, Fig. 1 depicts that increasing 𝜎, leads to increasing the size of the black hole 

shadow. Also, the black dotted curve is for Schwarzschild black hole, just for comparison. 

 

   
Figure 1. Shadow of KSK black hole in the celestial plane for different values of 𝑎 and 𝜎. 

 

4 Results and Discussion 

 

We studied the shadow behavior for the regular Schwarzschild black hole surrounded by 

holographic quintessence called the KSK black hole inspired by the Kiselev and Kazakov-

Solodukhin's ideas. We aimed to investigate how quantum effects and holographic 

quintessence will affect the shadow of a black hole. Especially, since the KSK black hole is a 

regular one due to the presence of quantum effects, studying its shadow and then comparing 

the outcomes with the observational data will help us to know if quantum effects play 

something special in background of spacetime. We found that increasing the quantum effects 
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through increasing the quantum parameter leads to increase the shadow radius. This situation 

is the same for increasing the effect of holographic quintessence. 

5 Conclusions 

 

The main conclusion of the paper is that quantum effects play an important role in the 

background spacetime, so that they directly change the shadow behavior of a black hole. Also, 

the presence of holographic quintessence as a candidate for dark energy, change the shadow 

of a black hole, too. So, we can say that, the shadow size of a black hole is determined by 

background quantum effects and dark energy ingredient of the Universe, in addition to the 

mass of the black hole. 
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