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Abstract

In this work we study thermodynamics of generalized Ayon-Beato and Garcia (ABG)
black hole metric which contains three parameters named as mass m, magnetic charge
q and dimensionless coupling constant of nonlinear electrodynamics interacting field
γ. This is done at extended phase space where we need a cosmological parameter
which behaves as the pressure thermodynamic coordinate. We generate the necessary
cosmological parameter from the charge parameter of the ABG metric field. In short we
first extract a variable cosmological parameter together with a variable mass function
such that the ABG black hole metric can be shown similar to a Schwarzschild anti de
Sitter form apparently. Then by calculating the Hawking temperature of the black hole
we obtain equation of state. By studying isothermal P-v curves we infer that the system
participates in the Hawking-Page phase transition where the disequilibrium evaporating
ABG black hole reaches finally to a vacuum AdS space. Other diagrams such that Gibbs
free energy, heat capacity and entropy satisfy possibility of phase transition and there
is also a coexistence point in phase space depended to γ value where the two different
phases exist synchronously. For small scale black holes there are three phase while for
larger than there are just two phase.

1 Introduction

The Einstein general theory of relativity is the most efficient theory of the gravity, which its
validity has been approved through its correspondence to the observations and experiments
in many years [1]. But in some cases, this theory is not practical. For instance the spacetime
singularity, which is an example of the failure of general relativity. The gravitational causal
singularity is the extreme density and as a result, so intense gravity in a point of space-
time where the spacetime breaks down. These causal singularities are appeared in metric
solutions of the Einstein‘s gravitational field equations and they can not omitted by usual
coordinate transformations. Penrose-Hawking singularity theorems show by holding the Ein-
stein‘s metric equations under some circumstances the existence of space time singularities is
unavoidable [2–4]. In order to avoid the central singularity of black holes, Penrose suggested
his cosmic supervision hypothesis which says: the singularity of black hole is always hidden
behind its event horizon [5]. Nevertheless, many agrees the singularity is generated by clas-
sical gravity theories, while they are neither physical nor exist in universe [6]. Sakharov [7]
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and Gliner [8] firstly showed by considering the effects of quantum, the spacetime singularity
is avoidable. Bardeen [9] inspired by Sakharov‘s idea, he proposed the first singularity free
solution of black holes which are called as regular black holes now. He suggested a static
spherically symmetric solution without considering a known physical source. Later, numer-
ous different kinds of regular black holes were suggested [10–14]. Among them, Ayon-Beato
and Garcia (ABG) [15] considered a nonlinear electromagnetic field as a physical source to
produce regular black holes. In this way, they obtained ABG regular black holes by solving
the Einstein‘s metric equations which are coupled with suitable nonlinear electromagnetic
fields. By following this method, other authors also confirmed ABG regular black holes
[16–18]. Cai and Miao [19] achieved a kind of generalized ABG related black hole solutions
which are dependent on five parameters named mass, charge and three parameters related
to nonlinear electrodynamic fields. This kind of black hole returns to regular black hole
under special conditions. Also, ABG black hole [15] and its other generalization [20] is ob-
tained under some assumptions. In [19] a new family of ABG black holes have been focused
which have three parameters named mass, charge and dimensionless parameter gamma. Cai
and Miao [19] studied quasinormal modes and shadows radius for this new family of ABG
black hole and also analyzed the effects of charge and gamma on event horizon radius and
Hawking temperature. Hawking by considering quantum effects, showed black holes radiate
like black bodies with particular temperature [21], related to surface gravity of black holes
horizon and Bekenstein attributed entropy to black holes which is related to area of surface
of the black holes horizon as S = A/4 [22]. These two discoveries lead us to investigate the
thermodynamic behavior of black holes. Black hole thermodynamics is the consequence of
relation between general relativity and quantum field theory which guide us to the unknown
quantum gravity. By considering black holes as thermodynamic systems, Bardeen, Carter
and Hawking [23] rewrote the four laws of thermodynamic for black holes. In this way, Davies
studied the phase transition of Kerr black hole in [24]. In study thermodynamics of the black
holes in usual way we need pressure thermodynamic coordinate which is bring from cosmo-
logical constant in extended phase space with negative value. In fact this is originate from
CFT/AdS correspondence where we investigate to study thermodynamics of the black holes.
In this way the Hawking and Page discovered a first order phase transition for black holes
in Anti-de Sitter (AdS) spacetime [25]. Other types of phase transitions have been followed
in other works [26–31]. Since the cosmological constant has been suggested as thermody-
namic pressure [32–35], the attentions have been attracted to black hole thermodynamics in
extended phase space [36–42]. Layout of this work is as follows.
In section 2 we define metric of generalized ABG black holes briefly. In section 3 we investi-
gate thermodynamics perspective of the model. In section 4 we study possibility of the black
hole phase transition. Section 5 is dedicated to summary and conclusion.
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2 Generalized ABG black hole

Let us we start with the following nonlinear Einstein Maxwell action functional [15]

S =

∫

d4x
√−g

[ R

16π
− L(P )

4π

]

(2.1)

in which, R = gµνR
µν is Ricci scalar and g = |detgµν | is absolute value of determinant of

metric tensor field. Nonlinear electromagnetic field lagrangian density L(P ) = 2PHP −H(P )
is coupled as minimally with the gravity where P ≡ 1

4
PµνP

µν is a gauge invariant scalar.

Pµν ≡ Fµν

HP
is nonlinear antisymmetric tensor versus the electromagnetic tensor field Fµν ≡

∂µAν−∂νAµ, where Aµ is electromagnetic potential. H(P ) is a structure function of nonlinear

electrodynamic field and Hp =
dH(P )
dP

[15]. By looking at the ref. [19], one can infer that the
above model has a spherically symmetric static black hole metric field as,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin θ2dϕ2). (2.2)

in which

f(r) = 1− 2mr
αγ
2
−1

(qγ + rγ)α/2
+

q2r
βγ
2
−2

(qγ + rγ)β/2
(2.3)

is called generalized ABG black hole metric potential with mass parameter m and magnetic
charge q and three different dimensionless parameters α, β and γ associated to nonlinear
electrodynamic fields. By assuming αβ > 6, βγ > 8 and γ > 0 the solution (2.3) reduces
to regular black hole solutions [9]. For particular choices α = 3, β = 4 and γ = 2 the
generalized ABG metric field (2.3) returns to original ABG black hole solution [15] and it
goes to other generalized ABG black hole solutions [20] by setting γ = 2. In this work we
follow a particular choice of generalized ABG black hole metric given by ref. [19], which is
introduced by considering the conditions α = 6

γ
and β = 8

γ
such that

f(r) = 1− 2mr2

(rγ + qγ)3/γ
+

q2r2

(rγ + qγ)4/γ
. (2.4)

It is easy to check that the above metric solution reduces to the well known Reissner-
Nordström form of the black holes for limits γ → ∞. In the subsequent section we study
thermodynamics of the above mentioned black hole.

3 Thermodynamics of generalized ABG black hole

According to AdS/CFT correspondence it is useful to consider a negative cosmological pa-
rameter which behaves as pressure of AdS vacuum space affecting on the existent black hole
in extended phase space. In order to participate a good form of cosmological parameter in
the metric potential (2.4) we rewrite it as follows.

f(r) = 1− 2M(r)

r
− 1

3
Λ(r)r2 (3.1)
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which is similar to a modified Schwarzschild-AdS black hole solution with the mass function

M(r) =
mr3

(rγ + qγ)3/γ
(3.2)

and the variable cosmological parameter

− 8πP (r) = Λ(r) =
−3q2

(rγ + qγ)4/γ
(3.3)

respectively in which we defined P (r) to be variable pressure of the AdS space. By solving
the event horizon equation f(r+) = 0 we determine radius of the black hole exterior horizon
r+ = r+(q,m, γ) versus the black hole parameters such that

1− 2mr2+

(rγ+ + qγ)
3/γ

+
q2r2+

(rγ+ + qγ)
4/γ

= 0. (3.4)

Although this equation of horizons has not simple analytic form of roots for r+ but there is
not a problem and we can continue our studies about thermodynamics of this black hole. By
substituting (3.2) and (3.3) into the horizon equation (3.4) we obtain the black hole ADM
mass function or enthalpy as follow.

M(r+) =
r+
2

+
4π

3
r3+P (r+). (3.5)

In the extended phase space the black hole mass plays the role of enthalpy of a thermody-
namic system M = H = U + PV , which in comparison to (3.5), the inertial energy U and
thermodynamic volume V correspond with the following forms respectively.

U(r+) =
r+
2
, V (r+) =

4π

3
r3+. (3.6)

However for this black hole the thermodynamic volume is obtained as equal to the geometric
volume of the black hole but these are two different quantities and have different forms
in many black holes. In fact thermodynamic volume of a black hole system is conjugate
quantity for the pressure in the black hole equation of state. By regarding the first law in
ordinary thermodynamic systems such that TdS = dU+PdV and utilize the thermodynamic
quantities attained earlier (eq. (3.6)), we define the Bekenstein entropy for this modified ABG
black hole as follows.

S(r+) =

∫

[1

2
+ 4πr2+P (r+)

] dr+
T (r+)

(3.7)

in which T (r+) is the black hole Hawking temperature given by surface gravity of the exterior
event horizon r+ [19] as follows.

T (r+) =
f ′(r+)

4π
=

rγ+

[

1− q2r2+(r
γ
+ + qγ)−4/γ

]

− 2qγ

4πr+(r
γ
+ + qγ)

(3.8)

where we eliminated m by substituting the horizon equation (3.4). In the next section
we calculate the modified ABG black hole equation of state and investigate possibility of
thermodynamic phase transitions.
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4 Equation of state and phase transitions

By regarding positivity condition on the thermodynamic specific volume of the black hole
fluid we must be choose

γ = 2n, n = ±1,±2,±3, · · · , r+ = −xq, r+ > 0, x > 0, q < 0 (4.1)

in the Hawking temperature (3.8) such that

t = pv +
2 + x2n

4πx(1 + x2n)
(4.2)

where we defined dimensionless the temperature t, the pressure p and the specific volume v
respectively as follows.

t = qT, p = q2P =
3

8π(1 + x2n)
, v =

2

3

(

x1+2n

1 + x2n

)

(4.3)

We should pointed that the choices q > 0 for which r+ < 0 corresponds to analytic con-
tinuation of the horizon radius in the complex analytic algebra which we do not consider
them in this paper. However these part of solutions can be physical because the Bekenstein
Hawking entropy of the black hole has a relationship with square exponent of the horizon
radius (the horizon surface area). One can check that the above equation of state reaches to
a pressureless dust fluid at large scales

lim
x→∞

v ≈ 2x

3
, lim

x→∞

p ≈ 0, t ≈ 1

3πv
(4.4)

but for small scale black holes x → 0 it is possible to appear phase transitions. To study this
phenomena we must be have critical points in phase space. The equation of state in ordinary
thermodynamics systems has a great importance, so does it in black hole thermodynamics.
The reason is, this equation refers to the thermodynamic behavior of the thermodynamic
systems, in this case, the black holes. Further more, it helps us to calculate the critical
points and explore the black holes’ behavior at these points. Now that, we have the equation
of state, we are capable to find critical quantities through solving below equations:

∂t

∂v

∣

∣

∣

p
= 0,

∂2t

∂v2

∣

∣

∣

p
= 0. (4.5)

By using chain rule in the derivatives the above critical equations reduce to the conditions
∂t
∂x

∣

∣

∣

p
= 0 and ∂2t

∂x2

∣

∣

∣

p
= 0 with the following parametric critical points

pc =
3

8π

(

x4n
c + (2n+ 3)x2n+2

c + 2

x4n+2
c + (2n+ 1)x2n+2

c

)

(4.6)
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vc =
2

3

(

x1+2n
x

1 + x2n
c

)

(4.7)

and

tc =
x4n
c + (2n+ 3)x2n

c + 2n+ 2

2πxc(1 + x2n
x )(x2n

c + 2n+ 1)
(4.8)

where numeric values of the quantities {n, xc} are obtained by the following equation.

x8n
c + (5 + 6n)x6n

c + (9 + 18n+ 4n2)x4n
c + (7 + 18n+ 8n2)x2n

c + 2 + 6n + 4n2 = 0. (4.9)

Diagram of the equation (4.9) is plotted in figure 1-a and it shows that for xc > 0 we must
be choose n = −1,−2,−3, · · · . In the table 1 we collected numeric values for critical points
for samples n = −1,−2, · · · − 10. and they use to plot other diagrams. The figure 1-b
shows that by raising |n| the critical specific volume of the black hole gas/fluid increases but
corresponding the critical pressure and the critical temperature decrease. By substituting

n xc vc pc tc

-10 0.908505 0.528167 1.15869 0.160807
-9 0.904823 0.517669 1.13268 0.159831
-8 0.901143 0.505222 1.0955 0.158429
-7 0.89778 0.490191 1.04048 0.156359
-6 0.895459 0.471618 0.955326 0.153179
-5 0.895958 0.447979 0.815329 0.14803
-4 0.904174 0.416661 0.565345 0.139054
-3 0.936833 0.372637 0.0643245 0.121634
-2 0.589602 0.350688 4.82914 0.32111
-1 0.57735 0.288675 8.24668 0.413497

Table 1: Critical points for several different values of n.

(4.3) into the entropy (3.7) we obtain dimensionless entropy as follows.

s =
S

q2
= −

∫

6πx(1 + x2n)[1 + 8πx2p]

8πpx2+2n + 3x2n + 6
dx (4.10)

and Gibbs free energy G = M − TS reads

g =
G

q
= − µx3

(1 + x2n)
3

2n

− t(x)s(x), µ =
m

q
. (4.11)

and heat capacity at constant pressure cp = t
(

∂s
∂t

)

p
is given by

cp =
−6πx2(1 + 8πpx2)

(1 + x2n)(8πpx2+2n + 3x2n + 6)
× (4.12)
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(8πpx2+2n + 24πpx2+4n + 24πpx2+6n + 8πpx2+8n + 6 + 21x2n + 27x4n + 15x6n + 3x8n)

(8πpx2+4n + 16πpnx2+2n + 8πpx2+2n − 3x4n − 6nx2n − 9x2n − 6)

We plotted diagrams of the above thermodynamic variables in figures 2,3,4, and 6. All figures
of 2-a,2-b,2-c and 2-d show that for pressures less than the critical one p < pc diagrams of the
temperature vs the specific volume at constant pressure behave as an ideal gas and so the
system can not participate in the phase transition. But for p ≥ pc the black hole gas/fluid
system participates in a small to large black hole phase transition. In fact stable point of
the disequilibrium black hole gas/fluid is minimum point in the t − v diagram at constant
pressure. For small scale black holes where 0 < x < 1 by comparing the diagrams 2-a
with 2-b one can infer that the black hole takes on just two phase means that it is made
from two subsystems. But by raising |n| there is appeared third phase. One can compare
the figures 2-b with 2-d to infer that by raising |n| the third phase is appeared also in
small specific volumes for big black holes 0 < x < 10. The figures 3 show pressure -specific
volume diagrams at constant temperatures. They show that for temperatures higher than
the critical one t > tc the black hole thermodynamic system participates in the Hawking-
Page phase transition where a black hole evaporates completely to reach the AdS vacuum.
This is because to have a maximum point for p− v diagrams. The figures 3-b and 3-d shows
third phase for the system which behaves like the ideal gas. Diagrams of 4 shows variations
of the heat capacity at constant pressure versus the specific volume. Changing the sign of
these diagrams by rasing v means that the phase transition is appeared for the black hole
gas/fluid system. There is two position where the phase transition appears just for p ≤ pc
By comparing these diagrams one can infer that possibility to bing the phase transition is
more for small 0 < x < 1 and large 0 < x < 10 black hole just by increasing |n| factor. The
diagrams in figure 5 show variations of the free Gibbs energy vs the specific volume. 5-a and
5-c show that for small black holes 0 < x < 1 when p < pc then the black hole takes on two
phase just for limited scales means for particular scales in the specific volume the black hole
has two different values for the Gibbs energy but for large scale black holes 0 < x < 10 this
free from the black hole scales. In other words the black hole for all scales has two different
phases. One should to look diagram of 5-d where the crossing point of the g − v diagram
makes a swallowtail form. This means coexistence of the two different phase where the black
hole is in equilibrium with them. This is appeared just for p ≤< pc. All diagrams in figure
5 are plotted for µ = m

q
= −10 and for µ = +10 they are repeated in the figures 6. In the

latter case there is not crossing point and so coexistence state for the two different phases of
the black hole gas/fluid system.

5 Conclusion

By re-defining the charge quantity of a generalized Ayon-Beato-Carcia nonsingular black hole
vs the variable cosmological parameter we obtained its thermodynamic equation of state.
The cosmological parameter is needed to consider pressure of AdS vacuum space effecting
on thermodynamic behavior of a black hole. By studying isothermal P-v curves we infer
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that the system participates in the Hawking-Page phase transition where the disequilibrium
evaporating ABG black hole reaches finally to a vacuum AdS space. Other diagrams such
that Gibbs free energy and heat capacity satisfy possibility of phase transition and there is
also a coexistence point in phase space depended to electromagnetic field coupling constant
γ where the two different phases exist synchronously. For small scale black holes there are
three phases while for larger than there are just two phase. As extension of this work we like
to study other thermodynamic behavior of the modified ABG black hole such as heat engine
and Joule-Thomson expansion and etc.

(a) (b)

(c) (d)

Figure 1: Numeric diagrams for xc, vc, pc, tc versus n
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(a) (b)

(c) (d)

Figure 2: t-v diagrams at constant pressure
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(a) (b)

(c) (d)

Figure 3: p-v diagrams at constant temperature
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(a) (b)

(c) (d)

Figure 4: cp − v diagrams
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(a) (b)

(c) (d)

Figure 5: g − v diagrams for µ = −10; (m > 0, q < 0)
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(a) (b)

(c) (d)

Figure 6: g − v diagrams for µ = 10; (m < 0, q < 0)

16


	1 Introduction
	2  Generalized ABG black hole
	3 Thermodynamics of generalized ABG black hole
	4 Equation of state and phase transitions
	5 Conclusion

