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Abstract. We calculate the ratio of shear viscosity per entropy density for a dilaton black 

brane in AdS spacetime. There is a well- known conjecture that this ratio should be larger 

than 
𝜂

𝑠
≥

1

4𝜋
   and we will show that this bound is saturated in this black brane. 
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1 Introduction 

 

AdS/CFT duality introduced by Maldacena [1] relates two kinds of theories: gravity in 

(n+1)-dimension and field theory in n-dimension. The most familiar example, the AdS/CFT 

duality asserts that SYM 𝒩 = 4 Super Yang-Mills (SYM) theory is dual to Type IIB string 

theory on 𝐴𝑑𝑆5 × 𝑆5. There’s no way to solve the strongly coupled field theories either 

analytically or perturbatively. AdS/CFT duality is a technique to overcome this problem. By 

using this duality, we can translate the strongly coupled field theory into a weakly gravitational 

theory and vice versa. The map between these two different theories is known as  holographic 

dictionary. In the long wavelength limit this duality leads to fluid/gravity duality. Any fluid is 

characterized by some transport coefficients. These coefficients identify the underlying 

microscopic properties of fluids which in turn rooted in the field theory interactions at strong 

coupling. So the gauge/gravity duality would be a proper tool to calculate these coefficients. 

In this work, our interest is the shear viscosity, one of the transport coefficients. The 

conservation of energy and momentum in relativistic Hydrodynamics is as follows, 

 

(1)                ∇𝜇𝑇𝜇𝜈 = 0 
𝑇𝜇𝜈 = (𝜀 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈                (2)  

Note that the term “relativistic fluid” doesn't mean the fluid is necessarily moves near the 

speed of light. However, the Lorenz symmetry preserves in the relativistic fluid. 

We introduce a parameter expansion 𝜀 =
ℓ𝑚𝑓𝑝

𝐿
, where ℓ𝑚𝑓𝑝 and L are the mean free path 

and the characterized length of system or the scale for the field fluctuations, respectively.  The 

scale of field variations has to be large compared to the mean free path, ℓ𝑚𝑓𝑝 ≪ 𝐿 for the 

validity of hydrodynamics regime on the boundary. We know that the regime where the fluid 

is valid corresponds to a theory with large AdS black holes. We can expand the energy-

momentum tensor in terms of 𝜀 when it is 𝜀 ≪ 1 [1-3] 

 

𝑇𝜇𝜈 = (𝜀 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 − 𝜎𝜇𝜈              (3) 
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𝜎𝜇𝜈 = 𝑃𝜇𝛼𝑃𝜈𝛽[𝜂 (𝜕𝛼𝑢𝛽 + 𝜕𝛽𝑢𝛼 −
2

3
𝑔𝛼𝛽𝜕𝑙𝑢𝑙) + 𝜉𝑔𝛼𝛽𝜕𝑙𝑢𝑙                      (4) 

where 𝜂 and 𝜉 are shear and bulk viscosities, respectively. 

In this article,  we calculate shear viscosity by Green-Kubo formula, 

 

𝜂 = − lim
𝜔→0

1

𝜔
Im𝐺𝑖𝑗,𝑖𝑗

𝑅 (𝜔, 0)               (5) 

Where 𝐺𝑖𝑗,𝑖𝑗
𝑅 (𝜔, 0)is as follows, 

𝐺𝑖𝑗,𝑖𝑗
𝑅 (𝜔, 0) = ∫ 𝑑𝑡𝑑𝒙𝑒𝑖𝜔𝑡𝜃(𝑡)〈[𝑇𝑖𝑗(𝑡, 𝒙), 𝑇𝑖𝑗(0, 𝐎)]〉                      (6) 

In the following section, we review the dilaton black brane in AdS space-time. Then calculate 

the shear viscosity to the entropy density ratio and find out that it satisfies the conjectured 

bound  
1

4 𝜋
. 

 

2 Dilaton Black Brane Solution 

 
We consider the 5-dimensional theory in which gravity is coupled to dilaton and Maxwell field 
with an action [4], 

 

𝑆 = ∫ 𝑑5𝑥√−𝑔( 𝑅 − 2Λ −
4

3
𝜕𝜇𝜙𝜕𝜇𝜙 − 𝑉(𝜙) − 𝑒−

4𝛼𝜙

3 𝐹2)              (7) 

Where 

 

𝑉(𝜙) =
Λ

3(2+𝛼2)2 [−12𝛼2(1 − 𝛼2)𝑒−
8(𝜙−𝜙0)

3𝛼 + 12(4 − 𝛼2)𝑒−
4𝛼(𝜙−𝜙0)

3 + 72𝛼2𝑒−
2(𝜙−𝜙0)(2−𝛼2)

3𝛼 ]     (8) 

 
The metric for the well-known 5-dimensional dilaton black hole with the cosmological constant 

is given by: 

2

3
2222

22

22 2

2

2

2
])(1[

])(1)[(

1
)( 



 



d
r

r
rdr

r

r
rf

dtrfds 







                          (9) 

where 

2

2

2

2

2222

2

22 ])(1[
3

1
])(1][)(1[)( 











 
r

r
r

r

r

r

r
rf                         (10) 

2222222

3 )(sin)(sin)(sin  dddd                 (11) 

If the solid angle is small, we have black brane, 

𝑑Ω3
2 =

1

𝑙2
(𝑑x1

2 + 𝑑x2
2 + 𝑑x3

2) =
1

𝑙2 𝑑�⃗�2                           (12) 

Notice 𝑟  is the radial coordinate that put us from bulk to boundary. In the following we apply 

dimensionless variable 𝑢 instead of r, that is  𝑢 = (
𝑏

𝑟
)2, then 
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             𝑓(𝑢) = −(
𝑢

𝑏2
(1 − 𝑢) (1 −

𝑎2

𝑏2 𝑢)

2−2𝛼2

2+2𝛼2

−
2

𝑙2)               (14) 

Where 3,..,0,   , 4,..,0, NM  , 4,..,0, NM .    𝑟+ = 𝑏  and  𝑟− = 𝑎. 𝑟+ = 𝑏 and   𝑟− = 𝑎 are the 

event horizons. 𝑙 is the radius spacetime. 

3   
𝜼

𝒔
 for Dilaton Black Brane Solution 

 
For the calculation of shear viscosity we perturbed the background metric as 𝑔𝜇𝜈 → 𝑔𝜇𝜈 +

ℎ𝜇𝜈   [5-8]. Considering the abbreviation ℎ𝜇𝜈 ≡ 𝜙, the mode equation is found to be, 
1

√−𝑔
𝜕𝜇 (√−𝑔𝑔𝜇𝜈𝜕𝜈𝜙(𝑡, 𝑢, �⃗�)) = 0                            (15) 

By applying Fourier transformation to (𝑡, �⃗�) coordinates in Eq. (16) and setting the momentum 
to zero in Green-Kubo formula 
 
Then introducing 𝜙(𝑡, 𝑢, �⃗�)  =  𝐺(𝑢)𝜙0(𝑡, �⃗�) where content 𝜙0(𝑡, �⃗�) is the source for both 
graviton in the bulk and the stress tensor on the boundary, we will get, 
 

𝑑2 𝐺(𝑢)

𝑑𝑢2 +
1

2
(

𝐻′(𝑢)

𝐻(𝑢)
+

𝐹′(𝑢)

𝐹(𝑢)
−

2

𝑢
+

3𝐵′(𝑢

𝐵(𝑢)
)

𝑑𝐺(𝑢)

𝑑𝑢
+

ℓ2𝜔2𝐵(𝑢)−𝑘2𝐻(𝑢)

4 𝑢 𝑟0
2 𝐹(𝑢)𝐻(𝑢)𝐵(𝑢)

𝐺(𝑢) = 0            (16) 

With 𝐹′(𝑢) =
𝑑𝐹(𝑢)

𝑑𝑢
 and 𝐻′(𝑢) =

𝑑𝐻(𝑢)

𝑑𝑢
. 

The long wavelength dynamics of strongly coupled field at boundary can be described in terms 
of the near horizon data of the black brane solution in the bulk space-time. Therefore, we solve 
the mode equation close to the horizon, 
 

𝐻(𝑢) ≈ −(1 − 𝑢)𝐻′(1)                        (17) 
 

𝐹(𝑢) ≈ −(1 − 𝑢)𝐹′(1)                       (18) 
 

𝐹(𝑢)𝐻(𝑢) ≈ (1 − 𝑢)2𝐹′(1)𝐻′(1) = (1 − 𝑢)2(
2 𝜋 ℓ2𝑇

𝑟0
)2               (19) 

 
Substituting Eq.(17) - Eq.(19) into the mode equation Eq.(17) gives us, 
 

𝑑2 𝐺(𝑢)

𝑑𝑢2 −
1

1−𝑢

𝑑𝐺(𝑢)

𝑑𝑢
+

𝜔2

16 𝜋2𝑇2 (1−𝑢)2 𝐺(𝑢) = 0            (20) 

The above equation has a solution in the form of 𝐺(𝑢)  =  (1 − 𝑢)𝛽. By putting this ansatz 

into the Eq.(20) we can obtain 𝛽, 

𝛽 = ±
𝐼𝜛

2
,                𝜛 =

𝜔

2𝜋𝑇
                          (21) 

 
Retarded Green's function on the boundary corresponds to the ingoing mode of near horizon. 
Due to event horizon properties the outgoing mode doesn't exist. By putting the outgoing 
solution aside we will have, 
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𝐺(𝑢) = (1 − 𝑢)−
𝐼𝜛

2                 (22) 
 
Here we consider the following ansatz for the mode equation Eq.(21), 

 

𝐺(𝑢) = �̃�(𝑢)−
𝐼𝜛

2 (ℎ̃0(𝑢) +
𝐼𝜛

2
ℎ̃1(𝑢) + 𝑂(𝜛2))                (23) 

 

Where �̃�(𝑢) = √𝐹(𝑢)𝐻(𝑢)  Since we want to normalize 𝐺(𝑢) on the boundary, we choose 

ℎ̃0(𝑢) = 1. 

 

For determining ℎ̃1(𝑢) we plug (23) in (16) and keep to first order of 𝜛, 
 

ℎ̃1
′′

+ (
�̃�′(𝑢)

�̃�(𝑢)
−

1

𝑢
+

3𝐵′(𝑢

𝐵(𝑢)
) ℎ̃1

′
−

�̃�′′

�̃�
+

�̃�′′

�̃�
( 

1

𝑢
−

3𝐵′(𝑢)

𝐵(𝑢)
 ) = 0            (24) 

 
It can be easily solved to find, 
 

�̃�ℎ̃1
′
−�̃�′

𝑢 𝐵(𝑢)
−3
2

= 𝐶1                                     (25) 

 

ℎ̃1 = 𝑙𝑜𝑔
�̃�

𝐶2
+ 𝐶1 ∫

𝑛 𝐵(𝑛)
−3
2

�̃�(𝑛)

𝑢

𝒃
𝑑𝑛                              (26) 

 

Where 𝐶1 and 𝐶2 are integration constants. For our purposes the explicit form of ℎ̃1 is not 

important. It would be enough to find 𝐶1  by demanding ℎ̃1 to be nonsingular at the horizon. So 
we may investigate the near horizon behavior of the integral in (29) as follows, 
 

�̃� ≈ −(1 − 𝑢)�̃�′(1) = −(1 − 𝑢)
2𝜋𝑙2𝑇

𝒃
                       (27) 

 

ℎ̃1 ≈ 𝑙𝑜𝑔
1−𝑢

𝐶2
−

𝐶1𝐵(𝑢=1)
−3
2 𝒃

2𝜋𝑙2𝑇 
log (1 − 𝑢)                              (28) 

 

To have non-singular ℎ̃1 at the horizon, 𝐶1 is chosen to be, 

𝐶1 =
2𝜋𝑙2𝑇

𝒃 
𝐵(𝑢 = 1)

3

2                                       (29) 

 
The prescription for calculation of retarded Green's function is presented by Son [5-7]. We 
calculate retarded Green's function by this prescription as follows: 
 

𝐺𝑅(𝑥 − 𝑦) = −√−𝑔𝑔𝑢𝑢𝐺∗(𝑢)𝜕𝑢𝐺(𝑢)|𝑢⟶0 =
𝐼 𝜔 𝒃𝟒

𝜋𝑙5𝑇
(

�̃�′ − �̃�ℎ̃1
′

𝑢 𝐵(𝑢)
−3
2

) |𝑢⟶0 

= −
𝐼 𝒃𝟒𝜔

𝜋𝑙5𝑇
𝐶1 = −

𝐼 𝒃𝟑𝜔

𝑙3 𝑔(𝑢 = 1)
3

2               (30) 

 
Now we can calculate shear viscosity by using Green-Kubo formula 
 



The 1st International Conference of Holography and its Applications 

9 to 10 March., 2022, Damghan University, Damghan, Iran. 

ICHA1-XXXXX 

𝜂 = − lim
𝜔→0

1

𝜔
Im𝐺𝑦𝑦

𝑥𝑥(𝜔, 0⃗⃗) =
𝒃𝟑

𝑙3 𝑔(𝑢 = 1)
3

2            (31) 

 
The entropy can be found by using Hawking-Bekenstein formula 

 

𝑺 =
𝑨

𝟒𝑮
=

𝒃𝟑 𝑉3

4 𝐺 𝑙3 𝑔(𝑢 = 1)
3

2                         (32) 

 
The entropy density, 

 

𝒔 =
𝑺

𝑉3
=

𝑨

𝟒𝑮
=

𝒃𝟑 

4 𝐺 𝑙3 𝑔(𝑢 = 1)
3

2                         (33) 

 
where 𝑉3 is the volume of the constant 𝑡 and 𝑟 hyper-surface with radius 𝑟0 and in the 

last line we used 
1

16𝜋𝐺
= 1 so 

1

4𝜋
= 4𝐺. 

 
Then the ratio of shear viscosity to entropy density is, 
 

𝜂

𝑠
=

1

4𝜋
                        (34) 

 

4 Results and Discussion 

 

We showed that the lower bound of the 
𝜂

𝑠
 preserves for Dilaton black brane. This bound is 

known as KSS conjecture [6] and considered for strongly interacting systems where reliable 

theoretical estimate of the viscosity is not available. It tells us that the 
𝜂

𝑠
 has a lower bound, 

𝜂

𝑠
≥

ℏ

4𝜋𝒌𝑩
, for all relativistic quantum field theories at finite temperature without chemical 

potential and can be interpreted as the Heisenberg uncertainty principle [5]. This conjecture 

violates for higher derivative gravities like the Gauss-Bonnet gravity [8]. The ratio of shear 

viscosity per entropy density is proportional to the inverse square coupling of quantum thermal 

field theory,  
𝜂

𝑠
~

1

𝜆2 , where 𝜆 is the coupling constant of field theory. In particular, the stronger 

the coupling, the weaker the shear viscosity per entropy density. In theories with gravity duals, 

even in the limit of infinite coupling the ratio  
𝜂

𝑠
 cannot be made smaller than 

1

4 𝜋
. Therefore, the 

dual of  Dilaton black brane is the same as Schwarzschild black brane. 

 

5 Conclusions 

 
We showed that KSS bound is saturated for Dilation black brane and the coupling of field 
theory dual of our model and Schwarzschild black brane is the same. 
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