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Chaos in a QQ system at finite temperature and baryon density
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Onset of chaos for the holographic dual of a QQ system at finite temperature and baryon density is
studied. We consider a string in the AdS Reissner—Nordstrom background near the black-hole horizon and
investigate small time-dependent perturbations of the static configurations. The proximity to the horizon
induces chaos, which is softened increasing the chemical potential. A background geometry including the
effect of a dilaton is also examined. The Maldacena, Shenker, and Stanford bound on the Lyapunov
exponents characterizing the perturbations is satisfied for finite baryon chemical potential and when the

dilaton is included in the metric.
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I. INTRODUCTION

It has been recently conjectured under general assump-
tions that, for a thermal quantum system at temperature 7,
some out-of-time-ordered correlation functions involving
Hermitian operators, for determined time intervals, have an
exponential time dependence characterized by an exponent
A and that such exponent obeys the bound

AL 27T (1)

(in units in which 2 =1 and kg = 1). The correlation
functions are related to the thermal expectation values of
the (square) commutator of two Hermitian operators at a
time separation ¢, which quantify the effect of one operator
on later measurements of the other one, a framework for
introducing chaos for a quantum system. The conjectured
bound, proposed by Maldacena, Shenker, and Stanford [1],
is remarkable due to its generality. It has been inspired by
the observation that black holes (BH) are the fastest
“scramblers” in nature: the time needed for a system near
a BH horizon to loose information depends logarithmically
on the number of degrees of freedom of the system [2,3].
The consequences on the connection between chaotic
quantum systems and gravity have been soon investigated
[4-7]. A relation between the size of operators on the
boundary quantum theory, involved in the temporal evo-
lution of a perturbation, and the momentum of a particle
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falling in the bulk has been proposed in a holographic
framework [8,9].

A generalization of the bound (1) for a thermal quantum
system with a global symmetry has been proposed [10]:
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where u is the chemical potential related to the global
symmetry, and p. is a critical value above which the
thermodynamical ensemble is not defined. The inequality
2)) is conjectured for y < p. and relaxes the bound (1).
Our purpose is to test this generalization.

Several analyses have been devoted to check Eq. (1)
using the AdS/CFT correspondence [11-13], adopting a
dual geometry with a black hole and identifying 7" with the
Hawking temperature, for example, in [14,15]. In particu-
lar, the heavy quark-antiquark pair, described holograph-
ically by a string hanging in the bulk with end points on the
boundary [16-19], has been studied in this context [20-22].
For this system 4 is the Lyapunov exponent characterizing
the chaotic behavior of time-dependent fluctuations around
the static configuration.

To test the generalized bound (2) one has to include
the chemical potential in the holographic description. In
QCD, a U(1) global symmetry is connected to the con-
servation of the baryon number. A dual metric has been
identified with the AdS Reissner—Nordstrom (RN) metric
for a charged black hole. We can use such a background for
testing Eq. (2).

The discussion of the 5d AdS-RN metric as a dual
geometry for a thermal system with conserved baryon
number can be found, e.g., in [23,24]. The metric is defined
by the line element
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1
ds* = —r*f(r)d* + r’dx* + — dr?, (3)
r’f(r)
with r the radial bulk coordinate and
4 2,2 2,4
flry=1=t EH B ()
r r r

The geometry has an outer horizon located at r = ry, and
the Hawking temperature is

= (1-2), 5

The constant u < \/2ry in (4) is interpreted as the baryon
chemical potential of the boundary theory and is holo-
graphically related to the charge O of the RN black
hole: Q = p?/r3,.

The gravity dual of the heavy quark QQ system at finite
temperature and chemical potential is a string in the back-
ground of (3) and (4) with the endpoints on the boundary
(Fig. 1). To investigate the onset of chaos for this system
focusing on the effects of the chemical potential, we use the
same approach adopted in [20] for the system at y = 0 to
shed light on the differences with respect to the case of
vanishing chemical potential.

II. GENERALITIES OF THE SUSPENDED
STRING IN A GRAVITY BACKGROUND

The AdS-RN metric in (3) belongs to a general class of
geometries described by the line element

ds* = =g, (r)df* + gu(r)dx* + g,.(r)dr*.  (6)

The dynamics of a string in such a background is governed
by the Nambu—Goto (NG) action

S = dzdo

). ()

(104
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FIG. 1. Profile of the static string for the QQ system. Note that
ro is the position of the tip of the string, ry the position of the
horizon, and L the distance between the end points on the
boundary.

with a, b = (z,6) and  the string tension. Note that gy, is
the metric tensor in (6), XM are the 5d coordinates, and
the derivatives are with respect to the world sheet coor-
dinates 7 and o.

We denote by r( the position of the tip of the string
as shown in Fig. 1, and [ the proper distance measured
along the string starting from r(. Choosing 7 = t and ¢ = [
(I-gauge), for a static string laying in the x—r plane with
XM = (1,x(1),0,0,r(l)) the Nambu-Goto action reads:

§=— T/ A1\ F(R(0) + G(NA). (8)

2na

where ¥ = d" andr = Fz( r) = Gu(r)gyx(r) and Gz(r) =

ar
Git(7) g (1 ) For the metric (3) one has F2(r) = r*f(r)
and G(r) =

Note that x is a cyclic coordinate, hence:

(1)

() =+ .
RS (4£0) = )

©)

The solution of Eq. (9) is obtained considering that
dr = gxx(r)dxz + grr(r)drz' (10)

For the unit vector 7 = (0,%(1),0,0, #(/)) tangent to the
string at the point with coordinate /, the relation holds:

gMNtMtN = gxx(r)xz(l) + grr(r>f2(l>

(1) + - P(l) =
O+ 7P =1 (D

Including this constraint in Eq. (9) gives

rif(r) — r§f (ro)

F=t . (12)
f= r3’3’; ((’ro)) (13)

The function r(I) for the static string can be computed
integrating Eq. (12).

The dependence of L, the distance between the string
endpoints on the boundary, on r( is obtained by:

. o ry f(ro)
L(”’)_zfm o TP =)

The energy of the string configuration

(14)
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o 2/ f(r
E(ro)—ﬁ/r dr = () . (15)

r)—réf(ro)

diverges and needs to be regularized. A possible prescrip-
tion is to subtract the bare quark masses, interpreted as the
energy of the string consisting in two straight lines from the
boundary to the horizon,

1 o0

TH

obtaining

Eaoro) = 2 (| df%‘ [7)
(1)

The function E,p can be expressed vs L. For the metric
in Eq. (4), the distance L(r) has a maximum L,,,,, and all
values L € [0, L,,,,] are obtained for two positions ry. Also
the function E () has a maximum, which decreases and
is reached earlier as u increases. For each value of the
chemical potential there is a value of r, above which there
is one energy value indicating a stable string configuration.
Below such ry, as shown in Fig. 2, the E (L) is not single
valued: for each L there are profiles identified by different
ro, with different energies, corresponding to stable and
unstable configurations.

III. SQUARE STRING

As suggested in [20], a simple model suitable for an
analytical treatment of the time-dependent perturbations is
a square string in the AdS-RN background geometry (3),
depicted in Fig. 3. The model describes quite well a string
near the horizon, as shown in Fig. 4, where the profile of the
string approaching the horizon is drawn.

It is convenient to work in the r-gauge (zr = rand 6 = r).
The embedding functions for a string in the x—r plane are
XM = (t,x(t,7),0,0,r), and the NG action reads

0.2p

0.6 0.8

FIG. 2. Double valued E (L) forry =1and u =0, 0.6, 1.2.
The inset is an enlargement of the L ~ (.8 range.
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FIG. 3. Square string near the horizon with ry =1, ry = 1.1
and L = 2.

2;ia'/dtdr\/1 +f2<”f(f)—}%%2>. (18)

For a static string X" = (¢, x(r), 0,0, r), this reduces to

S——%/dr\/r“f(r)ﬁ%-l. (19)

In the case of the square profile, Eq. (19) is determined
integrating along the three sides of the string. The result can
be regularized as follows:

S=-—

Sreg — _

Za’ (Lr% f(ro) =2(ro - rH))’ (20)

where L still denotes the distance between the endpoints on
the boundary. For ry near the horizon the energy

Sreg

E:
T

(21)

has a local maximum, hence upon small perturbations the
string departs toward an equilibrium configuration. The
stationary point for E is determined solving

10+
8t 1 —p=0
“ 6f 1 — p=0.3
p=0.6
4r 1 — p=0.9
of 1 —p=12
0

FIG. 4. String profile for r,; = 1, ry = 1.1 and different values
of the chemical potential p.
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rsL 9f(ro)

2\/f(ro Iro

For the metric function f(r) in (4), expanding the lhs of
Eq. (22) for rq — ry gives:

2Lr0

—2=0. (22)

ra(L?(2r% + 114%) = 8)

= 23
P05l = T 2202, + 512) — 8 (23)
Moreover, expanding for L — 0 at O(L?) gives
L2
o = (14 CA=). 29

We now consider a fluctuating string described by the action
in (18) and introduce a small time-dependent perturbation
r(1) to the static solution ro(t) = rg 4 +6r(): indeed, for
|

L~ _Zr().sol + 2rH + Lr(z),sol f(rO,sol) + 6r(t) <_2 + 2Lr(),sol f(ro,sol) +

the square string a perturbation makes time-dependent the
position ry of the bottom side. The regularized action is
given by

Sregz—ﬁ/dt L\/i’éf(ro)_ﬁr’oz—ﬂro—rl—l)
(25)

The Lagrangian

L= L\/ rf(ro) - ﬁf&‘; “2ro—rw)  (26)

can be expanded around ry, to second order in 6r(t):

Lr(z),solf/(ro,b‘Ol))
2 f(rO,sol)

2

r "(r r: f'(r L
Lot <\/ ronr) + 2222 0, “’1) G 0’330/12 G/ { 0‘“")) —0H1 . (27)
VI (T0.501) 8 (70501 4\/f(ros01) 2r0,solf(r0.sol)
and the equation of motion for 6r(z) reads:
5r(t) L + L5r (2 f T 2}’0 901f T, 901) r(z),solf/(ro,sol)2 r(z),solf//(r().sol))
S R YREEEYY, \/ f(r0.501) -
r%,solf(r0,501)3/2 \/ rO sol 4f(r0,sol)3/2 2 f(ro,sol)
Lrg of (Foso1)
-2 + 2Lr0,sol f(rO,sol) + —osole | oo = (28)
2 f(rO,sol)
This equation is solved b L2
. Y 1= 2xTy, (1 - 7;rTHrH> : (32)
5r(t) = Aexp (A1) + Bexp (—A1). (29)

The coefficient A, our Lyapunov exponent, determines the
time growth of the perturbation. It is given by:

70,50
A= 02 1 ( 8f(}"0 sol) + r%,so]fl(ro,sol)2
- 2r0,solf(r0,sol)(4f,(r0,sol) + rO,solf”(rO,sol)))l/z'

(30)

Expanding f(rgo1), f'(Fos01)> and f”(rg 1) at second order

in L we have:

i=am(1- L) (1-5en-m). o

Using Eq. (5) we find

The exponent A saturates the bound (1) at the lowest order
in L. The O(L?) correction is negative: Eq. (32) can be
written as

L? 2u?
A=2aTy| 1 -=2T% 1+ /1 +5=]]. (33)
( 4 " T

hence the coefficient of the L? correction increases with y.

IV. PERTURBED STRING

To study the onset of chaos in a more realistic configu-
ration, we perturb the static solution of a string near the
black-hole horizon by a small time-dependent effect.

There are different ways to introduce a small time-
dependent perturbation. We follow [20] and perturb the
string along the orthogonal direction at each point with
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FIG.5. Perturbation along the direction orthogonal to the string

in each point with coordinate .

coordinate [ in the r—x plane, as in Fig. 5. For the unit
vector n¥ = (0,n*,0,0,n") orthogonal to t* we have:

9rr(r)(n")? + g (r)(n*)? = 1 (34)
F(D)gre(r)n” + £(1) gux (r)n* = 0. (35)

The solution for the components n* and n” is

wi(l) = [ 27# (1),

r _ &)/C
e wr(l) = \/; (1. (36

for an outward perturbation, as in Fig. 5. Introducing a
time-dependent perturbation &£(¢,[) along n one has:

r(t,0) = rpg(l) + &(t, Hn" (1),

X(0.1) = xpe(D) + £ D (1), @)
|
’,.2
Cn l _ BG ,
O = ) e T 2 =)
1
Cll(l) - _4Cn(l) 5

with rpg(l) and xpg(l) the static solutions obtained
integrating Eqs. (12) and (13).

To describe the dynamics of the perturbation (assuming
it is small), we expand the metric function around the static
solution rpg(l) to the third order in &(z,1).

To the third order in ¢ the NG action involves a quadratic
and a cubic term. The quadratic term has the form:

s —

1 00 . .,
s | 8 [ CE i+ ). 39

with C,;, Cy, and Cy, depending on [. For the metric in
Eq. (3) with a generic metric function f(r) the coefficients
Cy, Cy, and Cy read:

1
wll) = —F——.
¢ () 2rBG\/f(rBG)
Cy(l) = _4C,1,(l)’
Cool1) = W{(—Zr‘écf(rgc)z@f(rgc)

+rpef'(rpe)) + rof (ro) (4f (rpe)* + rpef' (rsc)?
+rpef (ree)(f (rse) = reaf” (rsg)))}- (39)

The coefficients depend on [ through rp; (7). Their expres-
sions for the AdS-RN metric are:

Cooll) = (i — 100 P = 28 + 4y (B + 42) + 42y + 1) = rhary (B + 2)°)

£ PP (s = 106 = 28t + 43y (7 12) + A7 r (1 + 1)

+ 3rgeritpt (riy + 12) + 3rigri (g + 12)%)) :
rorse (56 = i) (e + ragri — raw’))*?

The equation of motion from (38) is
Cré + 0)(Cy€) — Copé = 0. (41)
For &(1,1) = £(1)e'" this corresponds to
0)(Cé) = Copé = w?C &, (42)

a Sturm-Liouville equation with weight function W(l) =
—C,(1). We solve Eq. (42) for different values of r, and g,

4 4.2 22 2(.18 6 .8, 4 12
rpera(ry +p°)%) = r5(rpg — 3rpgrau’ = 2rgp

o= 6o (7 + 1)

1

(40)

imposing the boundary conditions &() /=% 0. The two
lowest eigenvalues w? and w?, varying ry and u, are
collected in Table I, and in one case the eigenfunctions
eo(l) and e(l) are depicted in Fig. 6.

There are negative values of @} corresponding to an
unstable sector. For 4 = 0 the system is stabilized as r,
increases with the tip of the string departing from the BH
horizon: @} becomes positive for ry > 1.177. Fixing
ro = 1.1, the lowest lying state is stabilized increasing

the chemical potential y, and @} is positive for u > 1.2.
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TABLE 1. Eigenvalues w? and @? of Eq. (42) changing the
values of ry and pu.

ro = 1.1 ro = 1.172
U w? w? U w? w?
0 -1.370  7.638 0 —0.064 10.458
0.3 —-1.235 7.418 0.3 —0.005 10.239
0.6 —0.870  6.748 0.6 0.148 9.574
0.9 —0.388  5.605 0.9 0.324 8.428
1.2 0.006  3.938 1.2 0.397 6.735
ro = 1.18 ro = 5
U w? w? U »} w?
0 0.071  10.754 0 81.726  275.477
0.3 0.124  10.537 0.3 81.706  275.458
0.6 0.258  9.874 0.6 81.648  275.400
0.9 0.406  8.733 0.9 81.551 275.303
1.2 0.449  7.046 1.2 81.415 275.168

The dependence of @3 and w? on ry and u is shown in
Fig. 7, together with the line demarcating the regions of
negative and positive values of w3.

The perturbation can be expanded in terms of the first
two eigenfunctions e, and e,

£(t.1) = co(t)eo(l) + c1(1)er (D), (43)

with the time dependence dictated by the coefficient
functions ¢((7) and ¢ (). Up to a surface term, the cubic
action has the expression:

1 [+ . .
s0 =52 [ar [T Do+ D+ Do) a4

with Dy, functions of [. This reads, expanding the
perturbation &(z,1), as in Eq. (43):

3
2 oy o
1 \
0
-1
-2
-3 . . R R
-2 -1 0 1 2

FIG. 6. Eigenfunctions ¢y(/) (black line) and e, (/) (red line) of
Eq. (42) for ry = 1.172 and u = 0.6.

H 1.0

FIG. 7. Eigenvalues } and @? vs ry and y. The green surface
corresponds to w?, the red and blue surface to w3. The dark blue

line demarcates the (blue) region of negative a)% from the (red)

region of positive w?.

1 o 5
§6) — o / d /_ ) di{(Dyej + Dyeoél)ci(t)

+ (3Dgege} + Dy (2épe1éy + egé?))co(r)ci (1)

+ Ds(egetcoct + egetcocy + 2epeicoeiéy) ). (45)

Upon integration on /, an action for cy(#) and ¢ () is
obtained summing S?) and §©):

TABLE II. Note that K coefficients in Eq. (46) changing the
values of ry and p.

ro = 1.1 Y24 Kl KZ K3 K4 KS
0 11.36 21.72 1058 337 6.73
0.6 7.22 16.76 9.98 344  6.88
1.2 0.81 5.84 8.29 3.64 7.28

ro = 1172 H Kl K2 K3 K4 KS
0 7.63 20.61 8.17 269 5.39
0.6 5.13 17.30 8.04 281 5.62
1.2 0.86 9.30 7.81 322 644

ro = 1.18 )23 Kl K2 K3 K4 KS
0 7.36 20.64 8.00 2.65 529

06 497 17.45 790 276 5.53
1.2 0.88 9.69 776  3.18  6.36

) =5 U Kl Kz K3 K4 KS

0 -15.01 560.52 744 284 5.67
0.6 —-14.88 560.57 7.44 2.84  5.67
1.2 —-1449 560.73 7.46 284  5.69
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1 .
5@ 4+ §6) = P / dt{z (¢2—wic2)+ K¢}

n=0,1
+ K2COC% + K3C0(:’(2) + K4C0&% + KSéoclél .
(46)

The coefficients K; 5 depend on ry and y and are
collected in Table II choosing a set of values for such
quantities.

As one can numerically test, in cases corresponding to
negative values of @ the action describes the motion of ¢
and ¢, in a trap, and in some regions within the potential the

0.15
0.10
0.05! /

f

S 0.00 §

~0.05}

-0.10f N

-0.15

-0.20 -0.15 -0.10 -0.05 0.00

0.10 // T
0.05| / :

S 0.00}

-0.05

-0.10

-0.10 -0.05 0.00

0.10 T e,
005 / Pt T

£
+§ 0.00 (
i

-0.05} % ! 5

-0.10 e nns s
-0.15

-0.05 0.00

0.04
0.02
&S 0.00H: ‘ T

-0.02

-0.04

-0.10 -0.05 0.00

Co

FIG. 8.

S 0.000

S 0.000

S 0.000 Y or b R o2 h

S 0.000

kinetic term is negative. As suggested in [20], it is useful to
replace ¢g; — ¢ in the action with ¢y = ¢y + alé(z) +
a4 and ¢ = & + a3, neglecting O(&}) terms,
and setting the constants «; to ensure the positivity of
the kinetic term. We set the constants @; = =2, @, = —0.5,
and a3 = —1 slightly different from [20]. The replacement
stretches the potential stabilizing the time evolution: the
dynamics is not affected, and a chaotic behavior shows up
also in the transformed system.

To gain information on chaos we adopt a procedure
analogous to the one in Sec. I1I: we start considering a static
solution and perturb it with a small time-dependent
fluctuation. However, in this case an analytic computation

0.010

0.005

-0.005

-0.010
-0.008

-0.006 -0.004 -0.002 0.000

Co

0.010

0.005

-0.005

-0.010
—-0.008-0.007-0.006 -0.005-0.004 -0.003 -0.002-0.001

Co

0.005

-0.005} -

~0.008 -0.007 -0.006 -0.005 ~0.004 ~0.003 -0.002
Co

0004}

0.002 o

-0.002

-0.004

~0.008 -0.007 -0.006 —0.005 -0.004 —0.003 —0.002
Co

Poincaré sections for a time-dependent perturbed string, obtained changing the initial conditions, with r, = 1.1 and increasing

the chemical potential: 4 = 0 (top row), u = 0.03 (second row), u = 0.06 (third row), and y = 0.09 (bottom row) for ¢; = 0 and él > 0.
The plots in the right column enlarge the corresponding ones in the left column in the range of small &, ¢.

074016-7



P. COLANGELO, F. DE FAZIO, and N. LOSACCO

PHYS. REV. D 102, 074016 (2020)
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0.4r

Wwiltz
ar\ N

—04+

Jj

-0.04 -0.02 0.00 0.02 0.04 0.06

Co
FIG. 9. Poincaré section in the case ry = 1.1, y = 1.2, energy
E =1 x 107 with 8 x 103 time steps (top panel), 7o =5, u =0
and energy E = 1 x 1073 (bottom panel).

as in the simplified case in Sec. III cannot be used. Onset of
chaos can be investigated constructing Poincaré sections
numerically. We show the sections defined by ¢,(z) =0
and &,(7) > 0 for bounded orbits within the trap. In the case
ry =1, ro=1.1, and increasing u such sections are
collected in Fig. 8. For ¢, near zero the orbits are scattered
points depending on the initial conditions. On the other
hand, increasing u the points in the plot form more regular
paths: the effect of switching on the chemical potential is to
mitigate the chaotic behavior.

For y = 1.2 and ry = 1.1 the eigenvalue w3 becomes
positive and the orbits form tori, as one can see in Fig. 9.
Moving further away from the horizon, the Poincaré plots
for the string dynamics show regular orbits regardless of .

The Lyapunov exponents in the four dimensional ¢y, ¢,
phase space can be computed for the different values of r
and p using the numerical method in [25], briefly described
in Appendix. The results are shown in Figs. 10 and 11.
Focusing on the system with ry, = 1.1, we have evaluated
the convergency plots of the four Lyapunov coefficients,
one for each direction of the phase space, varying u from
u=0 to pu=12. The cases u =0 and u =0.6 are
displayed in Fig. 10, the other cases are similar. The largest
Lyapunov exponent behaves as an exponentially decreasing
oscillating function, which can be extrapolated to a large
number of time steps as shown in Fig. 11. The values
resulting from the fit decrease as u increases: the effect of
the chemical potential is to soften the dependence on the
initial conditions, making the string less chaotic.

LCEs

0 500 1000 1500 2000
Steps

LCEs

0 500 1000 1500 2000
Steps

FIG. 10. Convergency plots of the four Lyapunov exponents
(LCEs) in the case of a string with vy = 1.1, u = 0 (top panel),
u = 0.6 (bottom panel), and 2 x 103 time steps.
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FIG. 11. Fit of the largest Lyapunov coefficient Ay;,4x for ry =

1.1 (top) and ry = 5 (bottom), varying u. The local maxima of
plots as in Fig. 10 are fitted.
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FIG. 12. Largest Lyapunov exponent A;4x vs p for the tip
position ry = 1.1 (top) and ry = 5 (bottom).

To investigate the behavior for different ry, we have
computed the Lyapunov coefficients for r, = 5, away from
the horizon, and y up to u = 1.2. The convergency plots
show a rapid convergence of all Lyapunov coefficients
towards zero. The result of the fit for large time steps, for
different values of u, is in the same Fig. 11.
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FIG. 13.
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To summarize, the Poincaré plots show that chaos is
produced in the proximity of the BH horizon and that the
dynamics of the string is less chaotic as the chemical
potential increases. This is confirmed by the behavior of
the largest Lyapunov coefficient, shown in Fig. 12. In all
cases the bound Eq. (1) is satisfied: for example, for a system
with 7y = 1.1 and £ =0.6 we have 1~(2.7x1072) x 22T,
close to the value computed for 4 = 0 in [20]. There are no
indications of a relaxed bound as foreseen by Eq. (2).

V. GEOMETRY WITH A DILATON

It is interesting to study a different background, a
modification of the AdS-RN with the introduction of a
warp factor, used to implement a confining mechanism in
holographic models of QCD breaking the conformal
invariance [26]. The line element is defined as

2
ds> = e 7 <—r2 f(r)de + rPdx® + — : dr2>, (47)
r’f(r)

with the same metric function f(r) in Eq. (4). The Hawking
temperature is in Eq. (5) and does not depend on the dilaton
parameter c. The warp factor mainly affects the IR small r
region, and the geometry becomes asymptotically AdSs
in the UV r — oo region. Introducing a dilaton factor has
been used, in a bottom-up approach, to study features of the
QCD phenomenology at finite temperature and baryon
density, namely the behavior of the quark and gluon
condensates increasing 7 and y, the phase diagram, and
the in-medium broadening of the spectral functions of
two-point correlators [24,27-29].

0.004 ==
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.S 0.000

-0.002

-0.004 =

-0.006 -0.005 -0.004 -0.003 -0.002 -0.001

0.004

0.002 |

-0.002

-0.004

~0.0050-0.0045-0.0040-0.0035-0.0030—0.0025-0.0020
Co

Top: Poincaré section for the perturbed string in the background geometry with warp factor (47) for ry = 1.1, u = 0, and

parameter of the dilaton ¢ = 1, energy £ = 1 X 107> and 8 x 10° time steps (left plot). The right plot enlarges the left one in the small

Co, Co region. The bottom panels correspond to ¢ = 2.
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FIG. 14. Largest Lyapunov exponent for ry = 1.1 and y = 0,
increasing the dilaton constant c.

The analysis for a time-dependent perturbation of the
static string in this background can be carried out following
the previously adopted procedure. For the square string in
the background (47), the Lyapunov exponent computed at
O(L?) reads:

L? c?
/1:271TH<1—77TTHFH<1+—2>> (48)
r

H

This expression fulfils the bound (1).

To study the dependence of chaos on the dilaton
parameter ¢, we inspect the Poincare plots and compute
the Lyapunov exponents. The Poincare section for ry = 1,
ro = 1.1, u =0, and ¢ = 1 is shown in Fig. 13. For small
values of ¢, éo the section shows patterns hinting for a less
chaotic system as the constant ¢ increases. This is con-
firmed by the Poincare plot for ¢ = 2, which shows regular
orbits also in the phase space region of small ¢, and éo.
Therefore, increasing the dilaton parameter ¢ the system is
less chaotic. It can also be inferred from Fig. 14, where the
Lyapunov coefficient for the string with ry =1, rg = 1.1,
u =0 and a few values of c is drawn: the exponent
monotonically decreases vs c.

VI. CONCLUSIONS

The investigation of a holographic dual of the heavy
quark-antiquark system confirms the bounds (1) also in
the case of finite baryonic chemical potential. With increas-
ing u, the system is less chaotic. This agrees with the
conclusion obtained considering the charged particle
motion in the RN AdS background, for which a reduction
of the chaotic behavior is observed increasing the chemical
potential [30]. Decrease in chaoticity is also observed for a
thermal background involving a dilaton warp factor.

Even though our study is limited to small perturbations
of the static string configuration, it seems unlikely that the
analysis of large fluctuations would lead to different results:
In the case 4 = 0 the numerical computation of large string
fluctuations around the static configuration confirmed the
results obtained for small perturbations [20]. This induces

us to conclude that the bound (1) continues to hold in the
case of finite chemical potential.

A possible extension of our analysis concerns the
interplay between chaos and time-dependent background
geometry, namely the hydrodynamic metric worked out in
[31-34]. It would be interesting to establish the existence of
a bound analogous to Eq. (1) also in these cases.
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APPENDIX: COMPUTATION OF THE
LYAPUNOV EXPONENTS

To compute the Lyapunov exponents we use a method
that can be applied to any n-dimensional dynamical system
defined by the equation

X = F(x), (A1)
where X = dx/dt [25]. In our case we have a 4-d
Hamiltonian dynamical system with the Hamilton equa-
tions obtained from the Legendre transformation of
Eq. (46). The point x(z) in the phase space is represented
by the variables ¢((#), ¢(¢) and their conjugates momenta.
The Lyapunov coefficients, describing the exponential rate
growth of the distance between two initially near trajecto-
ries, are given by

o

lim —1In
[[uol]

=00 t

A(xg, up)

1
= tim 1D f'(x0) woll. (A2)
In (A2) ||ug|| is the length of the vector representing the
initial perturbation between two near trajectories, u, is its
evolution at time #, and the second equality is obtained from
the truncation

up = f'(xg +up) = f'(x0) = Dy, f'(x0) - o,

where f'(xy) is the solution of Eq. (Al) with initial
condition x,. This vector satisfies the so-called variational
equation:

(A3)

®,(x0) = D.F(f'(x0)) - @s(x0).

Do(xo) = 1. (A4)
where ®@,(xy) = D, f"(xo).

To compute the Lyapunov exponents both Egs. (A1) and
(A4) must be solved, namely using a Runge—Kutta method
fixing a time step size s and iterated K times in the time
interval 7.
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From Eq. (A2) the largest Lyapunov coefficient (denoted
as LCE of order 1) is obtained. It is useful to generalize the
definition for LCEs of order p, describing the mean rate
growth of a p-dimensional volume in the tangent space to
the trajectory. They are defined by

1
27 (x9. Uy) = lim —In|[Vol? (D, f'(Uy)

(A5)

where U is an initial parallelepiped identified by the initial
conditions of the near p + 1 trajectories. It is always
possible to find p linearly independent vectors such that

ﬂ.p(xO,U()) :ﬂ.] +ﬂ.2++lp (A6)
Therefore, each LCE of order p is given by the sum of the p
largest LCEs of order 1. For p = n we obtain the mean
exponential rate of growth of the phase-space volume given
by the sum of the whole spectrum of LCEs. This property
can be used to implement an algorithm to evaluate con-
vergency plots of the spectrum of the Lyapunov exponents.
The algorithm makes use of the Gram—Schmidt procedure
to generate a set of orthonormal vectors. Given an n-
dimensional solid U, identified by n-vectors {uy, ...,u,},
we have

VOI{MI, . (A7)

py = |[wrl]-.

where the w vectors are the orthonormal vectors obtained
by the Gram—Schmidt procedure on the u vectors. Hence,
starting from an initial condition x, in the phase
space and an n X n matrix, that is the initial condition

={u?, ..., ul} for Eq. (A4), we integrate the system of
equations (A1) and (A4). After each iteration, the evolution
of the tangent vectors is obtained: note that U, for the
first iteration, and so on. The new vectors must be
orthogonalized at each iteration. During the kth step the
n-dimensional volume increase by a factor ||w#]]...||wk]|,
where {wk,...,wk} is the set of orthogonal vectors calcu-

lated from U,. From Eq. (AS) we have for p = n:

1 & ) 4
A(xp, Ug) = ,}Ln;k—TZ1H(HW’1||-~-|IWZII)- (AB)
i=1

Subtracting A"~ and using the property in Eq. (A6), we
obtain the nth LCE of order 1:

(A9)

= hm—ZInHwnH

The procedure allows to compute the whole spectrum of the
Lyapunov exponents for the total number of steps K
reasonably large:

1 & .
il~ﬁ;1nllvv’1ll,

(A10)

1 & .
—TZI:IHIIWLII-

[1] J. Maldacena, S.H. Shenker, and D. Stanford, J. High
Energy Phys. 08 (2016) 106.

[2] Y. Sekino and L. Susskind, J. High Energy Phys. 10 (2008)
065.

[3] L. Susskind, arXiv:1101.6048.

[4] S.H. Shenker and D. Stanford, J. High Energy Phys. 03
(2014) 067.

[5] S.H. Shenker and D. Stanford, J. High Energy Phys. 05
(2015) 132.

[6] A. Kitaev, in Proceedings of the Breakthrough Prize
Fundamental Physics Symposium, Kavli Institute for Theo-
retical Physics, 2014, Stanford SITP seminars (2014).

[7] J. Polchinski, arXiv:1505.08108.

[8] L. Susskind, arXiv:1802.01198.

[9]1 A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind,
L. Thorlacius, and Y. Zhao, Phys. Rev. D 98, 126016
(2018).

[10] 1. Halder, arXiv:1908.05281.
[11] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).

[12] E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

[13] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
B 428, 105 (1998).

[14] J. de Boer, E. Llabrs, J. F. Pedraza, and D. Vegh, Phys. Rev.
Lett. 120, 201604 (2018).

[15] S. Dalui, B. R. Majhi, and P. Mishra, Phys. Lett. B 788, 486
(2019).

[16] S.D. Avramis, K. Sfetsos, and K. Siampos, Nucl. Phys.
B769, 44 (2007).

[17] S.D. Avramis, K. Sfetsos, and K. Siampos, Nucl. Phys.
B793, 1 (2008).

[18] R. E. Arias and G. A. Silva, J. High Energy Phys. 01 (2010)
023.

[19] C. Nunez, M. Piai, and A. Rago, Phys. Rev. D 81, 086001
(2010).

[20] K. Hashimoto, K. Murata, and N. Tanahashi, Phys. Rev. D
98, 086007 (2018).

[21] T. Ishii, K. Murata, and K. Yoshida, Phys. Rev. D 95,
066019 (2017).

074016-11


https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1007/JHEP08(2016)106
https://doi.org/10.1088/1126-6708/2008/10/065
https://doi.org/10.1088/1126-6708/2008/10/065
https://arXiv.org/abs/1101.6048
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP03(2014)067
https://doi.org/10.1007/JHEP05(2015)132
https://doi.org/10.1007/JHEP05(2015)132
https://arXiv.org/abs/1505.08108
https://arXiv.org/abs/1802.01198
https://doi.org/10.1103/PhysRevD.98.126016
https://doi.org/10.1103/PhysRevD.98.126016
https://arXiv.org/abs/1908.05281
https://doi.org/10.1103/PhysRevLett.80.4859
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1016/S0370-2693(98)00377-3
https://doi.org/10.1103/PhysRevLett.120.201604
https://doi.org/10.1103/PhysRevLett.120.201604
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.physletb.2018.11.050
https://doi.org/10.1016/j.nuclphysb.2007.01.026
https://doi.org/10.1016/j.nuclphysb.2007.01.026
https://doi.org/10.1016/j.nuclphysb.2007.09.025
https://doi.org/10.1016/j.nuclphysb.2007.09.025
https://doi.org/10.1007/JHEP01(2010)023
https://doi.org/10.1007/JHEP01(2010)023
https://doi.org/10.1103/PhysRevD.81.086001
https://doi.org/10.1103/PhysRevD.81.086001
https://doi.org/10.1103/PhysRevD.98.086007
https://doi.org/10.1103/PhysRevD.98.086007
https://doi.org/10.1103/PhysRevD.95.066019
https://doi.org/10.1103/PhysRevD.95.066019

P. COLANGELO, F. DE FAZIO, and N. LOSACCO

PHYS. REV. D 102, 074016 (2020)

[22] T. Akutagawa, K. Hashimoto, K. Murata, and T. Ota, Phys.
Rev. D 100, 046009 (2019).

[23] B.-H. Lee, C. Park, and S.-J. Sin, J. High Energy Phys. 07
(2009) 087.

[24] P. Colangelo, F. Giannuzzi, and S. Nicotri, Phys. Rev. D 83,
035015 (2011).

[25] M. Sandri, Math. J. 6, 78 (1996).

[26] A. Karch, E. Katz, D. T. Son, and M. A. Stephanov, Phys.
Rev. D 74, 015005 (2006).

[27] P. Colangelo, F. Giannuzzi, S. Nicotri, and V. Tangorra, Eur.
Phys. J. C 72, 2096 (2012).

[28] P. Colangelo, F. Giannuzzi, and S. Nicotri, J. High Energy
Phys. 05 (2012) 076.

[29] P. Colangelo, F. Giannuzzi, S. Nicotri, and F. Zuo, Phys.
Rev. D 88, 115011 (2013).

[30] D.S. Ageev and 1. Y. Aref’eva, J. High Energy Phys. 01
(2019) 100.

[31] P. M. Chesler and L. G. Yaffe, Phys. Rev. Lett. 102, 211601
(2009).

[32] P.M. Chesler and L. G. Yaffe, Phys. Rev. D 82, 026006
(2010).

[33] L. Bellantuono, P. Colangelo, F. De Fazio, and F. Giannuzzi,
J. High Energy Phys. 07 (2015) 053.

[34] L. Bellantuono, P. Colangelo, F. De Fazio, F. Giannuzzi, and
S. Nicotri, Phys. Rev. D 96, 034031 (2017).

074016-12


https://doi.org/10.1103/PhysRevD.100.046009
https://doi.org/10.1103/PhysRevD.100.046009
https://doi.org/10.1088/1126-6708/2009/07/087
https://doi.org/10.1088/1126-6708/2009/07/087
https://doi.org/10.1103/PhysRevD.83.035015
https://doi.org/10.1103/PhysRevD.83.035015
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1103/PhysRevD.74.015005
https://doi.org/10.1140/epjc/s10052-012-2096-9
https://doi.org/10.1140/epjc/s10052-012-2096-9
https://doi.org/10.1007/JHEP05(2012)076
https://doi.org/10.1007/JHEP05(2012)076
https://doi.org/10.1103/PhysRevD.88.115011
https://doi.org/10.1103/PhysRevD.88.115011
https://doi.org/10.1007/JHEP01(2019)100
https://doi.org/10.1007/JHEP01(2019)100
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevLett.102.211601
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1103/PhysRevD.82.026006
https://doi.org/10.1007/JHEP07(2015)053
https://doi.org/10.1103/PhysRevD.96.034031

